SYSMAC
CV500-BSC11/21/31/41/51/61

BASIC Units

OPERATION MANUAL

OMmRoON

はさみマーク

CV500-BSC11/21/31/41/51/61
BASIC Units

Operation Manual

Revised August 2003

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS
PRECAUTIONSt iiiiiiiiiiiiiiiiiiiiieennees xi

I'Intended Audience i xii
2 General Precautions e xii
3 Safety Precautions xii
4 Operating Environment Precautions i ... xiii
5 Application Precautions xiii

SECTION 1
Introductioncoeiiieieieeeeeenoecenenenna

[—

1-1 Features ..o 2
1-2 System Configurationot e 3
1-3 Nomenclature and Functionst 6
1-4 Precautionsttt e e e 12

SECTION 2
Getting Startedcoiiviiiiiinierennnccnnnnns 15

2-1 Installation 16
2-2 Switch Settingsot 18
2-3 Getting the Terminal Ready 19
2-4 Connecting the Terminal 20
2-5 Terminal Preparation 20
2-6 Memory Switches 21
2-7 Starting/Stopping Programs 21

SECTION 3
Memory Areas and Operationscovvveeennn. 23

3-1 MEMOTY ATEAS . .ottt ettt e et e e e e e 24
3-2 Data Transfer withthe CPU Unit 30
3-3 Memory SWItChes 33
3-4 Setting Memory Switches 42

SECTION 4
Programming Overviewcccoieeeeeeccnnns 45

4-1 BASIC Syntax and Operationsttt 46
4-2 Writing and Entering Programs 62
4-3 Program Execution and Debugging i ... 67
4-4 Saving and Loading Programs 71

SECTION 35

Dataand Filesottt ieeeeeeneenenennn 75

5-1 Data Operationsttt ettt e e e et 76
5-2 File Operationst e 84

SECTION 6
Advanced Programmingceeeeeeeeecccens 91

6-1 INEITUPLS . . .ottt 92
6-2 Multitasking 97
6-3 Machine Language 107
6-4 PC CommuniCationsttt e 120

SECTION 7

Peripheralsciiiiiiiiiiinnnnnnnnnneass 125

7-1 Peripheral Devices e 126
7-2 GP-IB Programming 130

vii

TABLE OF CONTENTS

SECTION 8
Troubleshooting and Maintenance 141

8-1 Troubleshooting 142
8-2 MAINteNanCettt e 147
Appendices

A Standard Models 151
B Specifications 153
C Hardware Interfaces 157
D Program Examples and Reserved Words 173
E BASIC INStruCtionsttt et e 187
F Machine Language Commands 195
G Reserved WOrds 205
H Controlling RS-232C Communications Lines 207
I Programming with Windows 95 HyperTerminal 209
J Setting Memory Switches e 213

GloSSaryvvviiiiiniinittnncscnnncnnncnnnnees 215
Indexovviiiiiiiiiiiiinniieeeseennnnsseanss 235
Revision Historyccvviiiiiiinnennnnnneeees. 241

viii

About this Manual:

This manual describes the installation and operation of the BASIC Unit and includes the sections de-
scribed below. The BASIC Unit is a CPU Bus Unit that connects to the CPU bus of a SYSMAC CV-series
Programmable Controllers. This Unit can be mounted to the CV500, CV1000, CV2000, or CVM1.

Note that this manual is not meant to be a substitute for a manual on BASIC programming. We suggest
that you read a manual on BASIC programming before attempting to operate the BASIC Unit.

Please read this manual completely and be sure you understand the information provide before attempt-
ing to install and operate the BASIC Unit.

Section 1 provides an introduction to the BASIC Units and describes the general features of the Units.
The system, hardware, and memory configurations are also provided.

Section 2 provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also
explains the methods that can be used to start and stop program execution in the BASIC Unit.

Section 3 provides information relating to the memory areas of the BASIC Unit. The memory switch set-
tings and specifications are also provided for the proper operation of the Unit.

Section 4 provides an overview of BASIC programming and is not meant to provide a comprehensive
explanation of BASIC programming.

Section 5 provides information on data management and operations for the BASIC Units.

Section 6 advances further into BASIC programming and provides information on interrupts, multitask-
ing, and machine language for the purposes of advanced programming.

Section 7 information relating to the use and programming for the peripheral devices. The GB-IB Inter-
face programming is also provided for use with the peripherals.

Section 8 provides the error messages and indications required for troubleshooting as well as general
maintenance procedures for the BASIC Unit.

Appendix A provides the standard models of the BASIC Unit and its supporting options/peripherals.
Appendix B provides the specifications of the Unit.

Appendix C provides information on hardware interface connection and assembly.

Appendix D provides various programming examples for the BASIC Unit.

Appendix E provides a list of BASIC instructions.

Appendix F provides a description of machine language commands.

Appendix G provides a list of reserved words.

Appendix H provides information on controlling RS-232C communication lines.
Appendix I provides information on programming with Windows 95 HyperTerminal.

Appendix J provides information on setting memory switches.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

ix

This section provides general precautions for using the Programmable Controller (PC) and the BASIC Units.

PRECAUTIONS

The information contained in this section is important for the safe and reliable application of the PC and the BASIC
Units. You must read this section and understand the information contained before attempting to set up or operate a

PC system.

1 Intended Audience
2 General Precautions . . .
3 Safety Precautions

4 Operating Environment Precautions i,

5 Application Precautions

xii
Xii
xii
xiii
Xiii

xi

Safety Precautions

1

2

3

xii

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

» Personnel in charge of installing FA systems.
¢ Personnel in charge of designing FA systems.
¢ Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the BASIC
Units. Be sure to read this manual before attempting to use the software and
keep this manual close at hand for reference during operation.

It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above mentioned
applications.

Safety Precautions

/N\ WARNING

/I\ WARNING

/\ WARNING

/\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PC or another external factor
affecting the PC operation. Not doing so may result in serious accidents.

e Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

e The PC will turn OFF all outputs when its self-diagnosis function detects any
error or when a severe failure alarm (FALS) instruction is executed. As a coun-
termeasure for such errors, external safety measures must be provided to en-
sure safety in the system.

Application Precautions

5

e The PC outputs may remain ON or OFF due to deposition or burning of the
output relays or destruction of the output transistors. As a countermeasure for
such problems, external safety measures must be provided to ensure safety in
the system.

¢ When the 24-V DC output (service power supply to the PC) is overloaded or
short—circuited, the voltage may drop and result in the outputs being turned
OFF. As a countermeasure for such problems, external safety measures must
be provided to ensure safety in the system.

4 Operating Environment Precautions

&Caution

&Caution

&Caution

Do not operate the control system in the following locations:

e Locations subject to direct sunlight.

¢ Locations subject to temperatures or humidity outside the range specified in
the specifications.

o Locations subject to condensation as the result of severe changes in tempera-
ture.

o Locations subject to corrosive or flammable gases.

o Locations subject to dust (especially iron dust) or salts.
¢ Locations subject to exposure to water, oil, or chemicals.
o Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in the
following locations:

o Locations subject to static electricity or other forms of noise.
¢ Locations subject to strong electromagnetic fields.

o Locations subject to possible exposure to radioactivity.

e Locations close to power supplies.

The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

/N\ WARNING

Observe the following precautions when using the PC system.

Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

» Always ground the system to 100 Q or less when installing the Units. Not con-
necting to a ground of 100 Q or less may result in electric shock.

» Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

¢ Mounting or dismounting Power Supply Units, 1/0 Units, CPU Units,
Memory Units, or any other Units.

o Assembling the Units.

» Setting DIP switches or rotary switches.

¢ Connecting cables or wiring the system.

» Connecting or disconnecting the connectors.

xiii

Application Precautions

5

xiv

&Caution

Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

» Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

o Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

¢ Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

» Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

« Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

¢ Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

¢ Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

¢ Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

¢ Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

o Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

¢ Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

¢ Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

» Wire correctly. Incorrect wiring may result in burning.
* Mount Units only after checking terminal blocks and connectors completely.

¢ Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

o Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

« Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

¢ Changing the operating mode of the PC.
» Force-setting/force-resetting any bit in memory.
e Changing the present value of any word or any set value in memory.

¢ Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

¢ Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

» Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

¢ Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

Application Precautions 5

¢ When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

» Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

XV

SECTION 1
Introduction

This section provides an introduction to the BASIC Units and describes the general features of the Units. The system, hard-
ware, and memory configurations are also provided.

1-1 Features

.. 2
[-2 System Configurationt e 3
1-3 Nomenclature and Functions it 6
[-3-1 Switch Settingsttt e 8
1-3-2 Hardware Configuration 10
1-3-3 Memory Configurationo.oniumininetin . 11
14 Precautionsottt e e e e 12

Features

Section 1-1

1-1 Features

Interfaces

BASIC Programming

Debugging

Storage of Variables

Machine Language

Multitasking

Program Control

Data Transfer

Clock

EEPROM

16 BASIC Units per PC

Choose from three different sets of interfaces to connect to the peripheral de-
vices required by your system.

RS-232C (two) and RS-422 Interfaces

CV500-BSC11 (without EEPROM) or CV500-BSC21 (with EEPROM)
RS-232C (two) and Centronics Interfaces

CV500-BSC31 (without EEPROM) or CV500-BSC41 (with EEPROM)
RS-232C (one) and GP-IB Interfaces

CV500-BSC51 (without EEPROM) or CV500-BSC61 (with EEPROM)

The BASIC Units employ a high-speed intermediate executable, interpret-
er-type BASIC, eliminating the need of compiling operations, so that program-
ming can be carried out easily and quickly. The Program area is divided into
three sections, each which can be programmed independently. The program
can be developed or edited from a commercially available terminal or computer
and then saved to memory cards in the CPU Unit.

Program execution can be traced by TRON instruction. Program execution can
be paused or resumed by STOP or CONT instructions. Program execution can be
stopped at or resumed from a specified line by BREAK or CONT instructions.

Data used in the program (variables) can be stored in memory and protected by
battery backup.

Program can be developed and executed in V25 machine language.

Up to 16 tasks can be processed in parallel by executing separate tasks to per-
form various arithmetic operations, data input/output from/to peripheral devices,
and data transfer with the CPU Unit.

Program can be started through key input from a terminal or by the snap switch
on the front panel. Also, a program can be automatically started on power appli-
cation or reset.

Data can be easily transferred back and forth between the BASIC Unit and the
PC’s CPU Unit. High-speed data transfer is possible from the BASIC program
without any programming in the CPU Unit. You can access data not only in the
local CPU Unit, but also in other BASIC Units or in Units located on local or re-
mote networks.

Data transfer can be controlled using one or more of the following methods.

Cyclic: A total of 384 input/output words of data can be transferred
when the I/O of the PC is refreshed.

CPU Bus Link: Data can be transferred with the CPU Unit or other CPU Bus
Units.

Event: The data in the CPU Unit can be read or data can be written to
the CPU Unit by using the instructions of the BASIC Unit even
when the program of the CPU Unit is not being executed.

The BASIC Unit uses the same clock the CPU Unit by transferring the time in the
CPU Bus Link Area. The time can be set from the BASIC Unit.

With BASIC Units equipped with EEPROM, the program can be saved to the EE-
PROM so that the Unit can be operated without a battery (however, variables still
require battery backup to be maintained during power interruptions).

Up to 16 BASIC Units can be mounted to the CPU Rack or Expansion CPU
Rack. The limit of 16 Units, however, includes all CPU Bus Units mounted to the
PC, so fewer BASIC Units will be available if any other CPU Bus Units are used.

System Configuration

Section 1-2

Network Communications

&Caution

The other CPU Bus Units are the SYSMAC LINK Unit, SYSMAC NET Link Unit,
and SYSMAC BUS/2 Remote I/O Master Unit.

PC READ and PC WRITE can be used to transfer data to/from other PCs on the
same or interconnected networks; PRINT and INPUT, to transfer data to/from
BASIC Units on other PCs on the same or interconnected networks. The BASIC
Unit also supports automatic processing for certain FINS commands trans-
mitted via PC networks.

The BASIC Unit is equipped with a hardware test program that is used for in-
spection and maintenance. When this program is executed, the entire program
area will be initialized. This program is not intended for customer use. Do not set
the unit number to 99, turn ON pin 2 of the front-panel DIP switch, and restart the
BASIC Unit or turn power on.

1-2 System Configuration

Models

Models with three different sets of interfaces are available, each of which is
available with or without EEPROM, making a total of six models of BASIC Units.
The appearance of these is shown below.

RS-232C (two) and RS-232C (two) and RS-232C (one) and
RS-422 Interfaces Centronics Interfaces GP-IB Interfaces
reen Y cv500-BSC11 == 1 cvs00-BSC31 [1 cv500-BSC51
e | (without EEPROM) v ‘ (without EEPROM) onrt wun .| (without EEPROM)
whe il cvs00-BSC21 mow 1 cv500-BSCH e 1| CV500-BSC61
m2 :| (with EEPROM) i s| (with EEPROM) i ¢| (with EEPROM)
:To’@ @nu' ;:Iu' @xm’ :ow‘@ @xm‘
RUM A_‘ 2un ﬁ RUN ‘ "‘
sTop StOP, srurg 1
onr i e
ey
[—] =3

Peripheral Devices

The following peripheral devices can be connected to the BASIC Unit. Note that
the peripheral device model that can be connected to the BASIC Unit depends
on the BASIC Unit Model.

System Configuration Section 1-2
-
Interface BSC11/BSC21 BSC31/BSC41 BSC51/BSC61
Port 1 Computer (with terminal mode), Computer (with terminal mode), | Computer (with terminal mode),
(RS-232C) | display terminal, printer, display display terminal, printer, display | display terminal, printer, display
Port 2 NA
(RS-232C)
Port 3 Host Link Unit (C500-LK203, NA
(RS-422) C500-LK201-V1, C200H-LK202, and
C120-LK202-V1)
E5AX-AL] Temperature Controller
Centronics | NA Printer, display
GP-1B NA Intelligent Signal Processor

Simple System
Configuration

Expanded System
Configuration

Following is an example of a simple system configuration where only one BASIC
Unit is mounted to the CPU Rack.

CPU Unit

[}
P B
B

4 E

Rig
s

F_—:{l::!
r-

Power supply

CPU Rack

BASIC Unit

[

The personal computer is directly connected to the BASIC

RS-232C

Unit with RS-232C.

=

Computer with
terminal mode.

The system can be expanded by using Link Units to create a network, thus allow-
ing the BASIC Unit to communicate not only with local BASIC Units and the local

PC, but also with remote BASIC Units and PCs. The following is an example of
such an expanded system. In this system, the computer can be connected to

System Configuration

Section 1-2

Unit

Link Unit

I/0 Control \

either CPU Unit to access any of the BASIC Units via the optical link between the
Link Units and/or the CPU Bus connection to the Expansion CPU Rack.

BASIC) Power
Unit CPU BASIC Unit Link Unit ~ CPU supply

H—j_
\ (_

kL

CPU
Rack

1 /dnit \ Urlt /

s ||] Pover L}

] 1[
o CPU Rack Er

]

[l peomraz

Optical fiber

cable

I/O Interface Unit

1

RS-422 Connect to either CPU Unit.

Expansion CPU
Rack

Power
=L
Computer with

- terminal mode.

Kl R X BT |
— {8 Enemehl

BASIC Unit

Nomenclature and Functions

Section 1-3

1-3 Nomenclature and Functions

Front

Ports

Indicators

Unit No. switch

RUN/STOP
switch

RS-232C

connector (Port 1)

RS-232C

connector (Port 2)

RS-422

connector (Port 3)

Battery com-
partment where
C500-BATO08 is
stored. To re-
move the cover,
slide it down.

DIP switch
(inside the cover)

UKIT RUN 0
— |sasic run 1
£RROR 2
BATLOY 3
MEM PROT a
7R 1 5
7R 2 s
3 7

—_— ¥o,
x10' x10°

| ——

DNIT RUN
AASIC RUN
ERROR
BATLOY
MEM PROT
TR
R2
R

a4 A Wn O

RUN Q
STOP
PORT ¢
jes-232

(o]
PORT 2
RS-232

0]

i !
//

/ CV500-BSC11

CV500-BSC21

RS-232C

Centronics
connector

PRT

CV500-BSC31
CV500-BSC41

GP-1B

connector

UNIT 2UN 1]
BASIC RUX b
ERROR 2
BATLOW 3
MEM PROT 4
7R 5
e 6
/83 7

UKIT @
x10

RUN

stor
PORT 1

GP-18

R§-232

@xw‘

CV500-BSC51
CV500-BSC61

Connects a terminal for programming or a display, printer, and bar code reader.
The line length is 15 m max.

RS-422

Connects a terminal or peripheral device at a greater distance than for the
RS-232C. The total line length is 500 m max.

Centronics

Connects a printer or display.

GP-IB

Connects a GP-IB device, such as an Intelligent Signal Processor.

Nomenclature and Functions Section 1-3

Indicators

Indicator Meaning

Name Color | State

UNIT RUN |Green |ON Lit after the Unit has been initialized.

OFF Lit when the Unit has been reset by the PC during a power interruption, or when an
error has occurred in the Unit (when the watchdog timer operates).

BASIC RUN | Green |ON Lit while the program is executed.

Flashing | Flashes slowly while the program is stopped and can be edited; flashes quickly while
the program is executed or while the Unit is waiting for input from a port.
OFF Goes off when the program is stopped.

ERROR Red ON Lit if a significant error (such as user memory check error, area overflow, or
executable intermediate code generation error) has occurred while the program is
developed or executed.

OFF Not lit when no error has occurred.

BAT LOW Red ON Lit if the supply voltage of the battery has dropped below a specific level.
OFF Not lit when the battery voltage is at the normal level.

MEM PROT | Orange | ON Lit when the user program area is write-protected.
OFF Not lit when the user program area is not write-protected.

T/R 1 Orange | Flashing | Flashes while the corresponding port T/R 3 indicator of the BSC31 and BSC41

T/R2 (port 1 to 3) transfers or receives data. does not flash.

TR3 OFF Not lit when the corresponding port is not | T/R 2 and T/R 3 of the BSC51 and
exchanging or receiving data. BSC61 do not flash.

Oto7 Orange | --- These indicators are turned ON/OFF by the user with system calls.

UNIT No. Setting Switch

RUN/STOP Switch

DIP Switch

Sets the unit number of the BASIC Unit. Refer to 7-3-1 Switch Settings for de-
tails.

Executes or stops the user program. This switch is used in combination with a
memory switch set for the BASIC Unit. Refer to 1-3-1 Switch Settings for details.

This switch specifies whether the user program memory is write-protected,
whether the memory switches are enabled, and whether the termination resis-
tance for RS-422 communications is connected. Refer to 1-3-1 Switch Settings
for details.

Nomenclature and Functions

Section 1-3

Rear View

R

1-3-1 Switch Settings

Unit Number Switch

Mounting screw
Fixes the BASIC Unit
to the Backplane.

BASIC Unit connector
Connects the BASIC
Unit to the Backplane.

Mounting screw
Fixes the BASIC Unit
to the Backplane.

The BASIC Unit is provided with three switches: unit number, run/stop, and DIP

switches.

This switch specifies the unit number of the BASIC Unit. Set this switch to any-
where between 00 and 15 using a small flat-blade screwdriver. Do not specify a
unit number that has already been set for another CPU Bus Unit, i.e., other BA-
SIC Units, SYSMAC LINK Units, SYSMAC NET Link Units, and SYSMAC
BUS/2 Remote I/0 Master Units.

Nomenclature and Functions Section 1-3

Run/Stop Switch Starts or stops the program of the BASIC Unit. This switch is used in combination
with a memory switch shown below. The memory switches are contained in the
PC and are used to set operating parameters for the BASIC Unit. Refer to 2-2
Memory Switches for details.

State Function

RUN/STOP switch | Memory switch

RUN Manual start In this state, the BASIC Unit waits for input of a command after power
application or a restart. To start the program, enter RUN from the terminal.

Automatic start In this state, the program execution is automatically started when power is
turned on or the Unit is restarted.

STOP Manual start In this state, the program is not executed even when RUN has been input
from the terminal. To execute the program, set the switch to the RUN position,
and then input RUN from the terminal.

Automatic start The program is not executed in this state. To execute the program, set the
switch to the RUN position.

DIP Switch The DIP switch is used as follows:
Pin Function State Operation
1 Memory protect | OFF Enables the user program area to be written. Set this state when developing,
editing, and loading the program.
ON Disables writing to the user program area.
2 Memory switch | OFF Enables the current memory switch settings.
enable ON Uses the default memory switch settings regardless of the current memory switch

settings. The state of the memory switches, however, can still be changed.* Used
when a terminal cannot be connected because of incorrect memory switch

settings.
3 Not used
4 Termination OFF Disconnects the termination resistance of RS-422.
resistance ON Connects the termination resistance of RS-422. Turn this pin ON when the BASIC

Unit is connected as the last devices in a RS-422 communications line.

&Caution *Pin 2 of the DIP switch is also used to start the hardware test program, which is
used for inspection before shipment. When setting this pin to the ON position,
make sure that a correct Unit No. (00 to 15) has been set on the unit umber
switches. If the hardware test program is executed, the user program may be
erased.

Nomenclature and Functions Section 1-3

1-3-2 Hardware Configuration

Block Diagram

: 71 | | User program
! EEPROM I~ — (source code /Tj*l
! : area) ‘ l Battery
o ‘
L Variable area/ | }
[| non-volatile N~
variable area |
|
\
System
program] User program /vJ
PROM [— (execution
code area)
RS-232C RS-232C
interface (Port 1)
SYSMAC = c
: P — MPU o I
CV-series i interface el (V25) \
PC | RS-232C] RS-232C '
****** ‘ interface ‘
Builtin 0S| | (Port2)
Unit no. T T T T T T A
switch N
: RS-422 | | | Rs-422
‘ interface (Port3)
LED || [S ST
RUN/STOP| | Interface |—] pen:fronics - Cehtromcs !
switch [| Interface || (Printer)
DIP ! — :
switch : GP-IB - GP-IB :
; interface L |
BASIC Unit

Note Sections in dotted boxes depend on the model of the BASIC Unit as shown in the
following table.

Model EEPROM Port1 | Port2 | Port 3 | Centronics | GP-IB
CV500-BSC11 Yes Yes Yes
CV500-BSC21 Yes Yes Yes Yes -
CV500-BSC31 | --- Yes Yes Yes
CV500-BSC41 | Yes Yes Yes Yes
CV500-BSC51 --- Yes - - - Yes
CV500-BSC61 Yes Yes Yes

10

Nomenclature and Functions

Section 1-3

1-3-3 Memory Configuration

User Program Source Code

Area

Non-volatile Variable and
Variable Areas

User Program Executable

The user memory area of the BASIC Unit consists of the following areas:

This area stores the source code of the user program. The machine language
program is also stored in this area.

The user program source code area can be divided into three areas in each of
which can be stored an independent program. It is not possible to move between
these areas during program execution; if moving between programs is neces-
sary, you must write them all in one program area as a single program.

Each program area is given a program number to control which area is active. A
memory switch controls which program number is active when power is turned
on. The active area can be displayed or changed using the PGEN command.

ROMSAVE, ROMLOAD, ROMVERIFY, W, and R commands are preformed for all pro-
gram areas. LOAD, SAVE, and MERGE are performed only for the current program
area.

These areas store the variables used in the user program. The variable area and
the executable code area are approximately 110K bytes in total. The non-volatile
variable area must be within 32K bytes.

Non-volatile variable are preserved when the BASIC Unit is turned on or pro-
gram execution is restarted. They can be cleared using OPTION ERASE or by
starting execution with RUN, ERASE.

When the user program is executed, executable codes are created in this area

Code Area from the source code and executed.
The memory map of the BASIC Unit is shown below.
$00000 $00500
RAM (w/battery) | Program1 | User program
Program 2 source code area
$10000fp— — — ——+ I (S code)
$18000 (Vacant) $OFFFF Program 3
RAM (w/battery)
$20000—™m8m8 ™ —™MMM@M@M T _
sio00 Norvoite - vl
variable
bytes max.
$30000] RAM (w/battery) 620000 o by) area | Approx.
””””””” T S 110K

$40000 bytes

(Vacant)

User program execution
$50000 code area (E code)
RAM System

$60000 work area

EEPROM User program -1 Systemworkarea)
$70000 :?:éce code save (Approx. 50K bytes)

(Vacant) -t -
$78000 /O area $3FFFF
$80000— I/OH - 4 1/O interface area
$84000 MPU internal RAM register
$90000 (Vacant)
$A0000

ROM - System program area

$FFFFF

11

Precautions

Section 1-4

1-4 Precautions

Terminals

Programming

Program Areas

Memory Switches

PC Interface

12

A terminal or personal computer can be connected to the BASIC Unit and run
either in terminal mode (TERM) or via communications software. Terminals
must be VT-52, VT-100, or equivalents.

» Both insert and overwrite programming are available. The writing mode can be
set in the memory switches; the default is overwrite.

e Memory cards mounted in the PC’s CPU Unit can be treated as files to save
BASIC programs and data.

e Programs can be created and edited on any MS-DOS platform and then read
into the BASIC Unit. Program files must have a . BAS extension.

e The MERGE command can be used to join multiple programs into one, but line
numbers must be unique.

¢ Up to three independent programs can be stored in the program areas (S-code
areas), but only one of these programs can be executed at a time. You cannot
jump between the program areas.

» The current program number is designated in the memory switches and effec-
tive when program execution is begun. The PGEN command can be used to
change the current program number, and the PINF command can be used to
display it at the left of the monitor screen.

o All three programs areas are saved to, read from, or compared to EEPROM
when ROMSAVE, ROMLOAD, or ROMVERIFY is executed. Reads/writes can also
be performed to all three program areas regardless of the current program
designation.

¢ Only the current program area is loaded, saved, or merged when LOAD, SAVE,
or MERGE are executed for memory cards.

o Memory switch settings are saved in the PC’s CPU Unit in an area separate
from the normal PC memory map. The BASIC Unit reads these settings from
the PC when started and stores them in a work area for operation. All memory
switches are set to all-zeros when the Unit is shipped and must be changed
unless the default settings are desired.

* Memory switch settings can be changed in the BASIC Unit’s work area in ma-
chine language (MON). Memory switch settings can be changed in the PC via
the Esw-w command, or they can be changed via a Programming Device (e.g.,
CV-series GPC or CVSS) connected to the PC.

e Memory cards can be used to copy memory switch settings from one PC to
another.

o The DIP switch on the front of the PC’s CPU Unit can be used to return memory
switches to their default settings. This can be used if the memory switch set-
tings are unknown to enable connecting a terminal using the default commu-
nications parameters.

¢ PC memory can be accessed from the BASIC Unit even if the PC itself is not
programmed.

¢ Event, cyclic, and CPU bus link processing are available to interface with the
PC. Of these, event processing is the most commonly used.

¢ Event processing allows specific memory areas in the PC to be read or written
when necessary.

Precautions

Section 1-4

Programming

Execution

Cyclic processing allows specific portions of PC memory to be automatically
transferred between the PC and the BASIC Unit. A memory switch is also
available to disable cyclic processing to minimize time spent servicing CPU
Bus Units.

CPU bus link processing provides data links between the PC and CPU Bus
Units in the CPU Bus Link Area. These links can be used to synchronize pro-
cessing between CPU Bus Units and the PC. Data link processing does, how-
ever, place a load on the PC and is not the only way to synchronize processing.
Unless data links are specifically desired, they should be disabled in the PC
Setup of the PC.

The PC READ and PC WRITE commands can be used to transfer consecutive
words to and from the PC. Processing time can be used more effectively by
transferring more words with each command rather than splitting the same
number of words over multiple commands.

Only one CPU Bus Unit is serviced each cycle by the PC even if more than one
Unit has sent a write request. This can produce delays in executing pC
WRITE.

Data can be transferred to and from PCs and BASIC Units on local or remote
networks. Transfers to PCs are performed with PC READ and PC WRITE.
Transfers to other BASIC Units are performed with OPEN followed by PRINT
and INPUT.

Programs are manipulated in S-code (source code) when editing at the termi-
nal or when saving to or loading from EEPROM or memory cards. S-code must
be compiled into E-code (execution code) via RUN to be executed. Code is
compiled automatically when RUN is executed and can produce a delay for
large programs. If the program is not changed, however, code is complied only
once, i.e., the first time RUN is executed, increasing execution speed for subse-
quent RUNS.

Actual execution starts when RUN is input, when the RUN/STOP switch is set to
RUN, or automatically when the BASIC Unit is turned on and the memory
switches are set for automatic program execution. Refer to page 21 for details.

Memory switches can be set to automatically load, compile, and run a program
from a memory card or EEPROM when the BASIC Unit is turned on. Be sure to
allow for compiling time when using this method, which also eliminates the
need for a backup battery.

Character variable length is fixed to 18 characters by default. Garbage collec-
tion is not performed. Any changes to variable length must be declared before
PARACT 0 using OPTION LENGTH. Errors are not generated when substitut-
ing to character variables even if the fixed length is exceeded.

Non-volatile variables are supported and are backed up by a battery. Data is
such variables is maintained during power interruptions and between program
executions. Non-volatile variables are cleared when OPTION ERASE is
executed or when the program is started with RUN, ERASE.

TRON and TROFF by default display only the status of the current task. Use
TRON ALL to display the status of all tasks.

The communications error flags in word n+2 of the cyclic area will be turned ON
if a parity, overrun, or framing error occurs during serial data reception. De-
pending on the type of error, all data up to the character when the error oc-
curred will be lost.

13

Precautions

Section 1-4

Multitasking

Other

14

o Interrupts from input commands that are awaiting completion will not return to
the input command, but to the line following the input command, i.e., the input
command will not be completed. Input command variable substitution will not
be performed and data may be left in the input buffer. To see if an input com-
mand has not been completed, check INTRL (a variable containing the line
number of the interrupted command) on the line following the input instruction
to see if it contains the line number of the input instruction.

* The send and receive buffers at the RS-232/422 port are 512 bytes respective-
ly.

» Tasks are switched after each command, even for compound lines. Tasks are
switched in order of task number to the next task that is ready. Tasks that are
busy (e.g., awaiting I/O) are skipped.

e PARACT Nand END PARACT are required to separate tasks. Use PARACT 0
and END PARACT for a single-task program.

e The BASIC Unit does not support a clock, but the clock (RTC) in the PC can be
accessed or set from the BASIC Unit.

e The BASIC Unit contains a hardware test program that is used for inspection
and maintenance. Executing this program will clear the entire memory area.
The hardware test program is executed by setting the unit number to 99, turn-
ing ON pin 2 of the front-panel DIP switch, and turning on the power or reset-
ting. This program is not designed for user execution; never executed this pro-
gram without consulting with qualified service personnel.

SECTION 2
Getting Started

This section provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also explains the meth-
ods that can be used to start and stop program execution in the BASIC Unit.

2-1

2-7

Installation

2-1-1 Mounting BASIC Unitst e e
2-1-2 Mounting DIimensionsttt

Switch Settings

Getting the Terminal Ready

Connecting the Terminal ..
Terminal Preparation
Memory Switches

Starting/Stopping Programs

16
16
17
18
19
20
20
21
21

15

Installation

Section 2-1

2-1

Installation

This section describes the minimal preparations necessary to set up a BASIC
Unit for programming. Refer to Appendix C Hardware Interfaces for information
on connecting other types of computers or peripheral devices. Refer to the CV-
series PC Installation Guide for details on general PC installation.

2-1-1 Mounting BASIC Units

16

I/O Control Unit

A BASIC Unit can be mounted to a CV-series CPU Rack or Expansion CPU
Rack. It cannot be mounted to an Expansion I/O Rack.

Up to 16 BASIC Units can be mounted to the CPU Rack and CPU Expansion
Rack as long as no other CPU Bus Units are mounted.

The Unit must be mounted to any of the rightmost 6 slots if the CVM1-BC103
CPU Backplane is used; the rightmost 3 slots if the CVM1-BC053 is used.

Be sure to securely tighten the mounting screws of the BASIC Unit.

CPU Unit

BASIC Unit

~

[=)

=l

CPU Rack

\ Power supply

]
-

T

Mounting screw

I/O Interface Unit

Expansion CPU Rack

Power supply

T é;g:;y;‘. ri

e
H

¥,
O

»
gl

7

|

BASIC Unit

Installation Section 2-1

2-1-2 Mounting Dimensions

When installing the BASIC Unit in a control box, determine the depth of the con-
trol box giving consideration to the connectors to be connected and the height of

Z Z Z
Z 7~ 7
Z Z a7
Z 7 Z
Z 4 7 Z
Z Z Z
Z Z Z
— A—»é — Aaé S— AHé
. - "7
_ Height (mm) BSC11/BSC21 | BSC31/BSC41 | BSC51/BSC61
G GPB somedorcoser o =

17

Switch Settings Section 2-2

2-2 Switch Settings

Set the following switches on the BASIC Unit as described below. Details on
switch setting are provided in Section 1 Introduction.

BSC31

UNIT RN
BASIC RUN
1L

1,2,3... 1. Seta Unit number in the range of 0 to 15. Do not set |,

the same Unit Number as those of the other CPU e
Bus Units.

I{:IV
xxh‘@
Run

STeabswn~o

<l

10’

5TOP

PDRY 1
RS-232

2. Set the RUN/STOP switch to the STOP position.

PORT 2
R5-232

oLl el

—

3. Open the battery compartment and set all the
switch pins of the DIP switch to the OFF position to
get the following settings:

Pin no. DIP switch setting

1 Memory write-protected (OFF)

2 Memory switches disabled (OFF)
3 Not used (OFF)

4 Termination resistance (OFF)

18

Getting the Terminal Ready Section 2-3

2-3 Getting the Terminal Ready

To use the BASIC Unit, the CPU Rack and a terminal for developing programs
are necessary. The terminal can be any of those illustrated below. A cable that
connects the BASIC Unit and the terminal is also necessary. Use CV500-CN228
as the cable connecting the computer (with terminal mode) and BASIC Unit.

BASIC Unit

[

[:] =
Connection Cable

Computer with
terminal mode.

Laptop computer Terminal

19

Terminal Preparation Section 2-5

2-4 Connecting the Terminal

Connect the terminal connecting cable to port 1 on the BASIC Unit, and securely
tighten the screws of the cable.

The selection of communication ports 1 through 3 used to connect the terminal is
specified by the memory switches in the CPU Unit. The default setting is port 1.
The terminal is therefore usually connected to port 1. To change the port, refer to
3-3 Memory Switches.

UNIT RUR
BASIC RUN
ERROR
BATLOY
MEM PROT
Ry
e e
7R3

Kt @ @ Mounting screws
Na.
x10* x10°

runy [2©
srng (J
PORT {
RS-232

[

J'OI:/ /

PORT2 m
R5-232

2-5 Terminal Preparation

First, turn on the power to the terminal. If the power to the PC is turned ON first,
the terminal may malfunction.

The defaults of ports 1 through 3 of the BASIC Unit are as follows. Set the com-
munications parameters of the terminal to match these.

Computer with
terminal mode.

L

/ RS-232C

oML W - O

Baud rate 9,600 bps

Data length 8 bits

Parity None

Stop bit 1 bit (or 2 bits)

Others Full duplex, no echo, XON/XOFF control, no automatic
carriage return

20

Starting/Stopping Programs Section 2-7

2-6 Memory Switches

After setting the terminal, turn ON the power to the PC and start the BASIC Unit.
If necessary, change the settings of the memory switches. The memory
switches are described in 3-2 Memory Switches.

Default Settings

If the default values are suited to the application, the memory switch settings do
not need to be changed. The default values are as follows:

System Parameters

Manual start Starts when RUN is entered from the terminal

Automatic program transfer Program is not automatically read from EEPROM or memory card
Program selection 1 Executes program 1

English error messages Displays error messages in English

Printer selection Does not print Kanji characters

Communications control using RTS/DTR signals is not possible for the ports set
as the terminal and printer ports. To perform communications control using RTS/
DTR signals, change the ports set as the terminal and printer ports to ports other
than the ones for which RTS/DTR control is to be used. This is done using
memory switch 3.

Terminal and Printer Ports The terminal and printer can be connected to the following ports:

BASIC Unit Terminal Printer
BSC11/BSC21 Port 1 Port 2
BSC31/BSC41 Port 1 PRT (Centronics)
BSC51/BSC61 Port 1
Terminal Specifications Baud rate 9,600 bps
Number of lines on 24 lines
terminal screen
Terminal type Display Terminal or commercially available terminals
with terminal mode
Editing mode Overwrite mode

Changing Memory Switch Settings
The memory switches can be changed if necessary. After changing the memory
switches, power to the PC must be turned OFF once and then back ON again to
enable the new settings.

The memory switches can be set from a terminal connected to the BASIC Unit or
from a Peripheral Device connected to the CPU Unit. Refer to 3-3 Setting
Memory Switches for details.

2-7 Starting/Stopping Programs
Once a program has been written to the BASIC Unit, it can be started/stopped in
any of the following three ways:
e From Terminal

This method is mainly used while the program is being debugged, and the pro-
gram is started or stopped by the key input from the terminal connected to the
BASIC Unit.

* RUN/STOP Switch

This switch is used to debug the program in a system configuration where the
terminal is not connected.

21

Starting/Stopping Programs

Section 2-7

¢ Automatic Starting

This is to automatically start the program on power application or restarting, and

is used to start the program after debugging has been completed.

Method

Preparation

Start

Stop

From terminal

Connect terminal.
Set RUN/STOP switch to RUN.
Set manual start mode in memory switches.

Input RUN and
carriage return
from terminal.

Input CTRL+X or CTRL+C from

terminal.

switches and supply power or restart.

RUN/STOP Set RUN/STOP switch to STOP. Set RUN/STOP Set RUN/STOP switch to STOP.
switch Set automatic start mode in memory switch to RUN. Input CTRL+X or CTRL+C if
switches, and supply power or restart. terminal is connected.
Automatic Set RUN/STOP switch to RUN. Use terminal Set RUN/STOP switch to STOP.
starting Set automatic start mode in memory mode. Input CTRL+X or CTRL+C if

terminal is connected.

22

Note Execution can be stopped from the keyboard by inputting CTRL-X or CTRL-C.
When CTRL-X is input, all execution, including 1/O processing, will be aborted
immediately and “Quit in ...” will be displayed. STEP and CONT cannot be used
after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and

CONT cannot be used.

SECTION 3
Memory Areas and Operations

This section provides information relating to the memory areas of the BASIC Unit. The memory switch settings and specifica-
tions are also provided for the proper operation of the Unit.

3-1 MEMOTY ATCAS . . ot ittt ettt et e e e e e e 24
3-1-1 Cyclic Transfer Areasouiin ittt 24
3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE 25
3-1-3 CPUBusLink Area e 28
3-1-4 Restart Bitso e 30
3-2 Data Transfer withthe CPU Unit i 30
3-3 Memory SWItCheso 33
3-3-1 System Parameters 35
3-3-2 Automatic Transfer File Name i .. 36
3-3-3 Terminal and Printer Ports 37
3-3-4 Baud Rates 38
3-3-5 Terminal Specificationscuiiuiiuiinn i, 39
3-3-6 Cyclic Area Settingsottt it e e 39
3-3-7 GP-IB Settingottt 42
3-4 Setting Memory SWitches 42

23

Memory Areas

Section 3-1

3-1 Memory Areas

3-1-1 Cyclic Transfer Areas

Example

I/0 Memory

DM Area

EM Area

24

CPU Unit

Cyclic transfers allow data transfers between the PC’s CPU Unit and BASIC Unit
to be synchronized with the cyclic servicing of the CPU Unit. The memory words
in the CPU Unit that can be allocated for cyclic transfer include those in I/O
Memory, the DM Area, and the EM Area.

Up to six output areas (CPU Unit to BASIC Unit) and up to six input areas (BASIC
Unit to CPU Unit) can be designated. The combined total number of 1/0 words
must be 384 or less in all 12 areas.

Cyclic transfers are set either by default or by using the software switches in the
memory of the CPU Unit. For details, refer to 3-3-6 Cyclic Area Settings. Any
words in the 1/0 Memory (words without prefixes), the DM Area, and EM Area
can be set for cyclic transfer. (The EM Area is an option and is available only for
the CV1000 and CV2000.)

Data transferred by cyclic transfers to and from the CPU Unit are read and writ-
ten in the BASIC program using the PC READ and PC WRITE commands.

The first word of the first output area contains status output from the CPU Unit to
the BASIC Unit. This word is designated as word “n.” The first 3 words of the first
input area contain status input from the BASIC Unit to the CPU Unit. The first of
these three words is designated as word “m.” The remainder of the first I/O areas
and the remaining areas are for user applications.

BASIC Unit
———————— Output
Output area 1 b | status:
Wd
Output area 2 A
Output area 3
N Qutput area 4 |—:>
V Output area 5
Output area 6
Input area 1 -— ‘ | Input
| | status:
Input area 2 Wd mto
Wd m+2
Input area 3
Input area 4
Input area 5
Input area 6

* When the memory switch is not used to set a specific cyclic area, the following
type of allocations are used to receive cyclic data.
N = 1500 + unit number x 25

Memory Areas Section 3-1
Direction Word Bit Name Remarks
CPU Unit to BASIC N System Setup Data written from the
Unit CPU Unit to these
words can be read to
N+1to N+14 User area the BASIC Unit using
PC READ "@SQ....”
BA_SIC Unit to CPU N+15 00to 15 Task status display
Unit N+16 00 Memory overflow
01 Compilation error
(error code 000 to
255)
02 Compilation error
(error code 256 or
higher)
03 E code error
15 Battery error
N+17 00 to 07 Error code
08 Execution error
09 Port 1 error
10 Port 2 error
1 Port 3 error
15 BASIC RUN
N+18 to N+24 User area Data written using PC

WRITE "Sl...” from
the BASIC Unit is
output here.

The memory switch can be used to change the cyclic area allocations.

3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE

The method for reading from or writing to the cyclic area in the CPU Unit using
the PC READ and PC WRITE instructions in the BASIC program of the BASIC
Unit is described here.
Input the following codes as the subcommands to specify the cyclic area using
the PC READ and PC WRITE instructions in the BASIC program. (Refer to the
SYSMAC BASIC Units Reference Manual (W207—-E1-2) for information on the
format of the PC READ and PC WRITE instructions.)

Instruction Subcommand Area First transfer word Number of transfer
words

PC READ @SQ Cyclic output area 0 to (maximum 1 to maximum
(Direction: CPU Unit | number of words —1) | number of words
to BASIC Unit)

PC WRITE @Sl Cyclic input area 3 to (maximum 1 to maximum
(Direction: BASIC Unit | number of words —1) | number of words
to CPU Unit)

Example

This example is for a cyclic area as follows:
Output area (CPU Unit to BASIC Unit): DM 12000 to DM 12009
Input area (CPU Unit to BASIC Unit): DM 12010 to DM 12019

25

Memory Areas Section 3-1

¢ The memory switch setting to make the above areas cyclic areas is as follows:

ESW6-1 = 0082—2000-0001-0010
ESW6-7 = 0082-2010-0001-0010

No. of words
Upper address

Lower address
Area type (0082: DM Area)

Note All the values are set in decimal.

o The first transfer word for the cyclic area is specified as follows:

First transfer word Address in CPU Unit First transfer word Address in CPU Unit
using the PC READ using the PC WRITE
instruction instruction
0 DM12000 0 DM12010
1 DM12001 1 DM12011
2 DM12002 2 DM12012
3 DM12003 3 DM12013
4 DM12004 4 DM12014
5 DM12005 5 DM12015
6 DM12006 6 DM12016
7 DM12007 7 DM12017
8 DM12008 8 DM12018
9 DM12009 9 DM12019
The shaded areas indicate addresses that are used to display status informa-
tion, thus not allowing them to be used for user data.
Example
This example shows reading the contents of 10 words from DM 12001 to DM
12009 in the CPU Unit to the BASIC Unit and storing in the variables H, I, J, K, L,
M, N, Oand P.
PC READ "@SQ,;,Q{9H4“;H,I,J,K,L,M,N,O,P
9 words
First word (DM 12001) onwards
Example

This example shows writing values from the variables A, B, C, D, E, F, and G in
the BASIC Unit to 7 words from DM 12013 to DM 12019 in the CPU Unit.

PC WRITE "@SI,3,7,7H4“;A,B,C,D,E,F,G

7 words
Third word (DM 12013) onwards

26

Memory Areas

Section 3-1

Output Status Word (CPU Unit to BASIC Unit)

Word n is the first word of the first output area allocated to the BASIC Unit.

m = 1500 + unit number x 25

Word

Bit

Name

Function

00to 14

The contents of the first memory switch word set in the CPU
Unit.

15

System reserved bit

Cannot be used by user

The words from word m+1 onwards are for the user.

Input Status Words (BASIC Unit to CPU Unit)

Word m is the first word of the first input area allocated to the BASIC Unit.

n = 1515 + unit number x 25

Word Bit Name Function
m 00 Task 0 Status Flag Each_ flag of this area is turned QN when the corresponding
o1 [Tas St Fla ek hamar s BASKS Ok v S s
02 Task 2 Status Flag flags.
03 Task 3 Status Flag
04 Task 4 Status Flag
05 Task 5 Status Flag
06 Task 6 Status Flag
07 Task 7 Status Flag
08 Task 8 Status Flag
09 Task 9 Status Flag
10 Task 10 Status Flag
11 Task 11 Status Flag
12 Task 12 Status Flag
13 Task 13 Status Flag
14 Task 14 Status Flag
15 Task 15 Status Flag
m+1 |00 Memory Overflow Flag This flag turns ON when the user program executable code
area or variable area is exceeded. (See Note 2.)
01 Compile Error Flag This flag turns ON when an error whose error code is 255 or
lower has occurred. (See Note 2.)
02 Compile Error Flag This flag turns ON when an error whose error code is 256 or
higher has occurred. (See Note 2.)
03 E Code Error Flag This flag turns ON when execution is specified from the E
code, or if the E code is abnormal.
04 to 14 Vacant (These bits are undefined.)
15 Battery Error Flag This flag turns ON when the supply voltage of the battery has

dropped below a specific level. This flag turns OFF when the
program is edited and executed after the battery voltage
returns to normal.

27

Memory Areas Section 3-1
Word Bit Name Function
m+2 |00to07 Error Code These bits indicate the contents of the system variable ERR
in hexadecimal between 00 and FF. The Error Code is reset
to 00 when the program is executed again.

08 Fatal Error Flag This flag turns ON when an error that causes the BASIC Unit
to stop has occurred while the program is executed. This flag
is turned OFF when the program is executed again.

09 Port 1 Error Flag These flags turn ON when an error has occurred in the
corresponding ports. The possible causes that turn ON these

10 Port 2 Error Flag flags are incorrect usage of the port, parity errors, overrun
errors, and framing errors. These flags turn OFF when the

1 Port 3 Error Flag program is executed again.

12t0 14 Vacant (These bits are undefined.)

15 BASIC Unit Execution Flag This flag is turned ON when the BASIC Unit is executing a

program. It is also turned ON when executable codes are
being created or while a command is executed.

Words from word n+3 onwards are for the user.

Note 1. The error contents are the same as those displayed on the terminal con-
nected to the BASIC Unit. For details on error codes, refer to 8-1 Trouble-
shooting.

2. The Memory Overflow and Compiler Error Flags indicate the cause of errors
when commands are input or when program execution is not possible.
These flags can be turned OFF from the terminal with TROFF.

3-1-3 CPU Bus Link Area

28

The CPU Bus Link Area in the CPU Unit is used to automatically pass data back
and forth between the BASIC Unit and the CPU Unit or between the BASIC Unit
and another CPU Bus Unit. The default setting is for no CPU bus links. To use
CPU bus links, specify them using the computer with terminal mode.

e The CPU Bus Link Area is refreshed in the CPU Unit at 10-ms intervals.

¢ Words in the CPU Bus Link Area are allocated by the CPU Unit according to the
unit numbers of the CPU Bus Units.

* Data can be read from or written to this area by using the PC READ or PC
WRITE commands.

Memory Areas Section 3-1

All numbers are expressed in BCD:

G000 to G004| System information - - -- Gooo| CPU Unitstatus Minute/second: 00 o 5
| 288; g;::te Ez‘;‘:”d Date: 01 to 31, Hour: 00 to 23
‘ G003l Year Month Year: 00 to 99, Month: 01 to12
: Day: 00 to 06 (00 is Sunday.)
: G004| --- Day
: G005 to G007 are not used.
”””” = CPU Unit Status
G008 to G127 Not Bits indicate the following when ON:
allocated bo: CPU Unit mode, PROGRAM
b1: CPU Unit mode, DEBUG
b2: CPU Unit mode, MONITOR
b3: CPU Unit mode, RUN
b4: User program executing (RUN output status)
b5: Not used.
b6: Non-fatal error
G128to G135 Unit 0 b7: Fatal error
G136 to G143 Unit 1 b8tob10: Not used.
G144 to G151 Unit 2 b11: UM read/write-protected
G152 to G159 Unit 3 b12: Memory card write-protect switch ON
G160 to G167 Unit 4 b13: Not used.
G168 to G175 Unit 5 b14: Not used.
G176 to G183 Unit 6 b15: System protected via key switch
G183 to G191 Unit 7
G192 to G199 Unit 8 b15
G200 to G207 Unit 9 G216 b15 ... 0: Unit operating
G208 to G215 Unit 10 G217 1: Unit stopped
G216 to G223 Unit 11 G218
G224 to G231 Unit 12 G219
G232 to G239 Unit 13 G220
G240 to G247 Unit 14 G221
G248 to G255 Unit 15 G222
G223

Note 1. All Units can read any CPU bus link words.

2. The words that are not allocated (G008 to G127) can be used for any pur-
pose by the CPU Unit program.

3. Words and bits specified as “Not used.” cannot be used for any purpose.

4. Bit 15 of the first word allocated to Units 0 through 15 is the Stop Flag for that
Unit and indicates whether the Unit is operating or not. All other bits and
words allocated to each Unit can be used as required by the user.

5. The system information (G000 to G004) can be read at any time.

29

Data Transfer with the PC Section 3-2

3-1-4 Restart Bits

A Restart Bit is turned ON to restart a BASIC Unit. AO0O1 contains Restart Bits for
the CPU Bus Units. To restart a BASIC Unit, turn the corresponding bit of this
area ON, and then back OFF again. These bits can be manipulated using the
SET(016) ladder-diagram instruction or from a Programming Device. The bit
number within this word corresponds to the unit number as shown below.

Unit no. 0 Restart Bit
L—— Unit no. 1 Restart Bit
Unit no. 2 Restart Bit
Unit no. 3 Restart Bit
Unit no. 4 Restart Bit
Unit no. 5 Restart Bit
Unit no. 6 Restart Bit
Unit no. 7 Restart Bit
Unit no. 8 Restart Bit
Unit no. 9 Restart Bit
Unit no. 10 Restart Bit
Unit no. 11 Restart Bit
Unit no. 12 Restart Bit
Unit no. 13 Restart Bit
Unit no. 14 Restart Bit
Unit no. 15 Restart Bit

Note Unit numbers or memory switch setting cannot be changed by restarting a BA-
SIC Unit using its Restart Bit. To change the unit number of memory switches,
restart the Unit by resetting the CPU Unit.

&Caution When routing tables are transferred to the CPU Unit, the corresponding Restart
Bit will turn ON and the BASIC Unit will stop.

3-2 Data Transfer with the CPU Unit

To transfer data between the BASIC Unit and CPU Unit, the following three
methods are available. With each method, data is read and written using the pC
READ and PC WRITE commands from the BASIC Unit. Programming the CPU
Unit is not necessary. When desired, programming is also possible from the

CPU Unit.
Data transfer Application
Cyclic Specified words in the CPU Unit, set in advance using the

software switches in the CPU Unit, are read or written during
cyclic servicing. Since different areas can be simultaneously read
and written, this method is used to transfer data when the same
data needs to be transferred repeatedly. The output status from
the CPU Unit to the BASIC Unit and the input status from the
BASIC Unit to the CPU Unit is transferred or received using cyclic
transfer. Software switches can be set to disable cyclic transfers.

Event Specified data is read from or written to the CPU Unit when
required. This method is most frequently used to transfer data.

CPU bus links CPU bus links can be used to transfer small quantities of data
with another BASIC Unit or the CPU Unit at high speeds. This
method is used to operate the BASIC Unit in synchronization with
another BASIC Unit or the CPU Unit, or to broadcast data to all
other Units and the CPU Unit. CPU bus links are disabled in the
default settings, but time information in the CPU Bus Link Area
can be accessed. To specify CPU bus links, use the computer
with terminal mode.

30

Data Transfer with the PC Section 3-2

Data Flow
The following figure illustrates the areas to/from which data can be written/read
by the three data transfer methods described previously, and examples of the
BASIC commands used for the transfer. The data transfer method is determined
by the suboperand of the PC READ or PC WRITE command.
CPU Unit Z BASIC Unit
I/O Area :
Work Areas |
SYSMAC BUS :
and SYSMAC '
BUS/2 Areas X
, Memory Areas Programing Example
Link Area X
) Cyclic Transfers
Holding Area '
; R — PC READ ”@SQ,0,3,3H4”;A,B,C
CPU Bus Unit .
Area | w <— PC WRITE “@SI,4,1,H4";D
DM Area i
EM Area X
\ Event Transfers
Transition Area - . —> PC READ "@R,100,50,S50,H4";
, R X(0)
Step Area : «— PC WRITE "@D,30,20,520,H4";
— W Y (0)
T|mer Area : i TIME$ = 712:34:56"
| CPU Bus Links
Counter Area '
/ R —= PRINT TIMES
-1 — PC READ "@SG,128,3,3H4";
CPU Bus Link g R LM, N
Area B e W <-— PC WRITE ”@SG,137,2,2H4";

P,0Q

: R: Read area
: W: Write area

31

Data Transfer with the PC

Section 3-2

Data Transfer/Reception Timing

CPU Unit Operation

Data is transferred/received during the CPU Bus Unit service interval of the CPU
Unit for both the cyclic and event transfer methods. The cycle at which this serv-
icing is executed differs depending on whether the CPU Unit is operating syn-
chronously or asynchronously. For details, refer to the CV-series PC Operation
Manual: Ladder Diagrams.

Operation cycle
Host link Basic CPU Bus Unit | Device servic- Host link Basic CPU Bus Unit
servicing processing servicing ing servicing processing servicing
!
Unit No. cyclic Unit No. 0 event Unit No. cyclic Unit No. 0 event Unit No. 0 event
processing processing processing processing processing

Cyclic Transfers

CPU Unit

BASIC Unit

Event Transfers

%

CPU bus links are refreshed via interrupts every 10 ms.

Cyclic processing period

! i

Pass Pass

v B B %

T
1)
PC READ

Note

Event processing

Completion

T (5)
) 4
PC WRITE Completion

()

Timing (1) and (2)

If the BASIC Unit has executed the PC READ instruction when the cyclic pro-
cessing period arrives, the CPU Unit will process data transfer/reception.
Timing (3), (4), and (5)

The PC WRITE instruction writes data to the internal area of the BASIC Unit and
then ends immediately. Data transfer to the CPU Unit is executed during the next
cyclic processing period.

If neither the PC READ northe PC WRITE instruction is executed, output status
from the CPU Unit to the BASIC Unit and input status from the BASIC Unit to the
CPU Unit will be transferred every 100 ms.

Event processing

| PK Pass Pass | | Pass Pass
] — , — — - — —
CPU Unit / o V 7 V)
BASIC
(1) &) ®3) (4) () @) (8)
PC READ or Completion PC READ Completion PC READ or Completion Completion

PC WRITE

32

or PC PC WRITE of (5) of (6)
WRITE

PC READ or

PC WRITE

Memory Switches

Section 3-3

CPU Bus Link Transfers

Timing (1) to (2) and (3) to (4)

If the PC READ or PC WRITE instruction is executed by the BASIC Unit immedi-
ately before the event processing period, the CPU Unit transfers/receives the
data immediately.

Timing (5) to (7) and (6) to (8)

If more than one PC READ or PC WRITE instruction is executed before the pro-
cessing of one event, any subsequent instructions are kept pending until the
next event processing.

For CPU bus links, the CPU Unit reads data from each CPU Bus Unit each 10
ms, and then writes the entire CPU Bus Link Area to all the Units.

10 ms 10 ms

CPU Unit

/7 /

BASIC

T
(1)
PC READ

&) (3) 4
Completion PC WRITE Completion

Timing (1) to (2) and (3) to (4)

When pPC READ is executed, data written from the CPU Unit is read when the
next CPU bus link servicing is performed. When PC WRITE is executed, data is
read into the CPU Unit and other CPU Bus Units (such as other BASIC Units)
when the next CPU bus link servicing is performed.

3-3 Memory Switches

Memory switches are software switches containing operating parameters that
control BASIC Unit operation. These parameters are kept in the CPU Unit and
are transferred to the BASIC Unit whenever the system is turned ON or re-
started. Each BASIC Unit has its own memory switches. (The memory switches
are collectively called the CPU Bus Unit System Setup.)

The memory switches for each BASIC Unit consist of a pointer to the memory
switches for the Unit and the settings of the memory switches. The default set-
ting can be changed to alter BASIC Unit operating parameters. To write data to
the memory switches, use a terminal connected to the BASIC Unit or a Graphic
Programming Console with a CV-series Memory Cassette connected to the
CPU Unit.

The memory switch settings can be momentarily returned to their default set-
tings without changing the actual settings by turning ON pin 2 on the DIP switch
on the front of the BASIC Unit. This is useful if a terminal cannot be connected
because of unknown memory switch settings.

33

Memory Switches Section 3-3

The memory switches consist of the following parameters. The area for each
BASIC Unit occupies 60 words. Each parameter is described in detail in the fol-
lowing sections.

Note The Extended PC Setup in the CPU Unit, which includes BASIC Unit memory
switch settings, can be transferred to and from Memory Cards. Refer to memory
card operations in the CVSS: Online Operation Manual for details.

Byte 1 Memory Switch Parameters

address
+0 - - - System parameters
Start method

) +1 Automatic transfer setting
Pointers Program No. setting
Unit 0 File name . Error message selection

. Kaniji printer setting
Unit 1 . . !

Automatic transfer file name

Unit 2 +7 | Terminal Printer - - - Terminal/printer port selection
Unit 3
Unit 4 +8 Port 1 Port 2 Port 3 - - - Baud rate for each port
Unit 5 +9 | Edit mode | Model Number of digits on - - - Terminal specifications
Unit 6 screen

- +10
Unit 7

Qutput area

Unit 8 (CPU Unit to BASIC
Unit, 24 words) '
Unit 9 .

Unit 10 //—w \\

Unit 11 '
Unit 12 +34 - Cyclic area settings
Unit 13 K

- Input area ,
Unit 14 (BASIC Unit to CPU '
Unit 15 Unit, 24 words)

“

+58 | Master/Slave Address -~ - GP-IB settings
+59 “ " Not
used.
MSB LSB

34

Memory Switches Section 3-3

3-3-1 System Parameters

The system parameters of the memory switch set the basic items related to the
operation of the BASIC Unit. The following figure illustrates the bit configuration
of the system parameters. Set the bits shaded in this figure to 0.

Memory Switch: ESW1

ESW1= S5 FE (when set from terminal)
+0 +1

Byte address b7 b0
+1
\

\:]- - - - Starting Mode

@ ------- Automatic Transfer

b6 b5 b4

This system parameters are initially set to 0000, i.e., manual start, manual
transfer, program 1, English, and no Kaniji printer.

b0: Starting Mode

Setting Function

0 Manual start The user program is started when RUN is input from the terminal after the
version has been displayed by inputting CTRL-X. The RUN/STOP switch
must be set to RUN to manually start program execution.

1 Automatic start The user program is automatically started on power application or
restarted with the RUN/STOP switch set to the RUN position. If the
RUN/STOP switch is set to the STOP position, the program is started
when the RUN/STOP switch is set to the RUN position.

b6, b5, b4: Automatic Transfer

Setting Function
000 Manual transfer Automatic transfer is not executed.
100 EEPROM automatic transfer The user program is automatically transferred from the EEPROM to the

source code area on power application or restarting (only models with
EEPROM). Write the necessary program to the EEPROM in advance by
using ROMSAVE.

101 File automatic transfer 1 The user program is automatically transferred from the memory card in the
CPU Unit to the source code area on power application or restarting. The
file name is specified by the following words in the memory switches. A
memory card must be mounted to the CPU Unit.

35

Memory Switches

Section 3-3

Byte address b7 b0
+0
AL
Eﬁ/ Program No.
b5 b4
EZLE/ --------- Error Message Language

I Kaniji Printer
b1, b0: Program No.
Setting Function
00 Program 1 Sets program 1 as the user program to be edited on power application or
01 resetting.
10 Program 2 Sets program 2.
11 Program 3 Sets program 3.

b4: Error Message Language

Setting Function
English Error messages are displayed in English.
Japanese Error messages are displayed in Japanese.

b5: Kanji Printer

Setting

Function

Not used

Not compatible with Kaniji printer.

Used

Specifies KI/KO processing. (K1 = 1B4B, KO = 1B48)

3-3-2 Automatic Transfer File Name

36

When automatic program transfer is specified in the automatic transfer setting of
the system parameters, the name of the file to be transferred must be specified.
If the file is specified to be manually transferred, the file name does not need to
be specified.

The file name may consist of up to 8 characters of ASCII followed by a file type
(extension) delimited by a period from the file name. The file name must consist
of alphanumeric characters starting with an alphabetic character. The file exten-
sion is BAS.

Memory Switch: ESW2
ESW2=x x sk sk % x
01 23 456

% %k %k %k sk (when set from terminal)
7 8 9 1011

Byte address b7 b0

+2
+3
+4
+5
+6 Name
+7

+8

+9

+10
+11
+12
+13
+14

Extension

Memory Switches Section 3-3

Example: File Name ABC1234.BAS

1@1) | - File name is set starting from
first bit

eE) | - - File name is followed by a period
(2E in hexadecimal)

8) N N Period is followed by file type

o0) | ------- Excess area is 00.

Inputting 00 is unnecessary when this
area is set via the machine language de-
bug command Esw2, because 00 is auto-
matically set.

Note Any file can be read and used as a user program by using the automatic file
transfer function. However, if automatic transfer is specified, a certain amount of
time is required to read the program from the file and create executable codes
before the program is actually started.

3-3-3 Terminal and Printer Ports

This area of the memory switch specifies the ports to which the terminal and
printer are connected. Set a BCD number from 01 to 04 in this area, by referring
to the following illustration:

Memory Switch: ESW3

ESW3= -5 E (when set from terminal)
+14 +15

Byte address b7 b0
+15 :E - - - - Selecting Printer Port

Selecting Printer Port

Setting Function
01 RS-232C 1 Selects top RS-232C (port 1) port as printer port.
02 RS-232C 2 Selects bottom RS-232C (port 2) port as printer port.
04 Centronics Selects Centronics port as printer port. With the BSC11/21, this sets the
Unit as having no printer port.
FF None No printer port set.
Note: This setting is only possible with system ROM versions 1.23 or
higher.
Byte address b7 b0

+14 :D - - - - Selecting Terminal Port

Selecting Terminal Port

Setting Function

01 RS-232C 1 Selects top RS-232C (port 1) port as terminal port

02 RS-232C 2 Selects bottom RS-232C (port 2) port as terminal port

03 RS-422 Selects RS-422 (port 3) port as terminal port

FF None No terminal port set. If it becomes necessary to use a terminal, disable the
memory switch settings using pin 2 of the DIP switch.
Note: Ihlﬁ setting is only possible with system ROM versions 1.23 or

igher.

37

Memory Switches

Section 3-3

Note The defaultis 0000. Consequently, the following printer and terminal ports are
selected:

BSC11/BSC21: 0102 (port 1 as terminal port and port 2 as printer port)
BSC31/BSC41: 0104 (port 1 as terminal port and Centronics as printer port)
BSC51/BSC61: 0100 (port 1 as terminal port and no printer port)

* The system ROM version is displayed on the BASIC initial screen on the termi-
nal.

e Communications control using RTS/DTR signals is not possible for the ports
set as the terminal and printer ports. To perform communications control using
RTS/DTR signals, change the ports set as the terminal and printer ports to
ports other than the ones for which RTS/DTR control is to be used. This is done
using memory switch 3. Also, if the system ROM version is 1.23 or higher, it is
possible to not set a printer port and terminal port by setting the relevant bytes
to FF.

3-3-4 Baud Rates

38

This area sets the baud rates of RS-232C ports (ports 1 and 2) and RS-422 port
(port 3). Set a BCD number from 0 to 7 to the area corresponding to each port by
referring to the following illustration:

Memory Switch: ESW4

ESW4= 0 _HE (when set from terminal)
+16 +17

Byte address b7 b0
+17
Port2 Port 1
b7 b0

+16 \:l: - - - - Transfer Rate Setting

Port 3

Transfer Rate Setting

Setting Function
Sets the baud rate to 9,600 bps (default).
Sets the baud rate to 300 bps.

Sets the baud rate to 600 bps.

Sets the baud rate to 1,200 bps.

Sets the baud rate to 2,400 bps.

Sets the baud rate to 4,800 bps.

Sets the baud rate to 9,600 bps.

Sets the baud rate to 19,200 bps.

N |u bW IN RO

Note 1. The defaultis 0000, i.e., the transfer rate of all the ports is 9,600 bps.
2. Be sure to clear the bits shaded in the previous figure to 0.

3. The RUN echoback will overlap with the port initialization display if program
execution is started from a terminal connected to a port set to 300 bps. Al-
ways set the port connected to the terminal to 600 bps or greater if you are
going to use the terminal to start program execution.

Memory Switches

Section 3-3

3-3-5 Terminal Specifications

This memory switch sets the model of the terminal and the number of display
digits for the terminal connected to the BASIC Unit.

Memory Switch: ESW5

ESW5= E (when set from terminal)
+18 +19

Byte address b7 b0
+19 :E - - - - Number of Display Digits

Number of Display Digits

This byte sets the number of display digits of the terminal in 2 BCD digits. When
this byte is set to 00, 24 digits, which is the default value, is assumed.

Byte address b7 b0
+18
1 Leeo-- Model
s Editing Mode
Model
Setting Function
Terminal mode Specifies terminal mode.
VT-52 (VT-52 mode) Specifies VT-52 or equivalent.
VT-100 (ANSI mode) Specifies VT-100 or equivalent.
Editing Mode
Setting Function
Overwrite | Sets overwrite mode for program editing
Insert Sets insert mode for program editing

Note The default value is 0000. Consequently, terminal mode is selected with the

number of display digits set to 24 and the overwrite mode already set.

3-3-6 Cyclic Area Settings

&Caution

This area of the memory switches sets the area of the CPU Unit with which the
BASIC Unit will cyclically (periodically) transfer data. Up to six output areas
(CPU Unit to BASIC Unit) and up to six input areas (BASIC Unit to CPU Unit) can
be set. Up to 384 words can be set for all areas combined.

If this area is not set, the following defaults are used. These are in the CPU Bus
Unit Area.

Area: I/O memory area

Address: Output: 15 (first 15 words)
Input: 10 (last 10 words)

Number of areas: 1 for both output and input

Keep the first word address and number of words to within the range of each
area. If an improper word address is set, all the settings of the input and output
areas following the improper word address will be invalid. A range check is not
performed for this setting. Check your settings and input values carefully.

Each setting area consists of 4 words. For unused areas, set 0000 as the area
setting. If 0000 is set as the area type setting for all the areas, cyclic data transfer
is not executed.

39

Memory Switches Section 3-3

A minimum of 3 words is required in the input area to refresh BASIC Unit in-
formation.

Memory Switch: ESW6
ESW6-1= ek ek _ RGN _ ek ek _ SRk Rk (when set from terminal)
+20 +21 +22 +23 +24 +25 +26 +27

Byte address Byte address
| b7 b0 | b7 b0
+20 | Output area 1 } gwords > +20 0 | 0
+21 | Area setting (See the following table.)
+28 | Output area 2 +22 |)

+23 LFirst word address
+24 (See the following table)

+36 | Output area 3

+44 | Output area 4 +25 | ~

+26 | | Number of words
+27 | J (See the following table)

+52 | Output area 5

+60 | Output area 6

+68 Input area 1

+76 Input area 2

+84 | Inputarea 3

Area Setting
+92 | Inputarea 4

Setting Function
+100 | Inputarea s 0080 I/O Memory Area
+108 | Input area 6 0082 Data Memory Area
0090 Expansion Data Memory Area, bank 0
0091 Expansion Data Memory Area, bank 1
0092 Expansion Data Memory Area, bank 2
0093 Expansion Data Memory Area, bank 3
0094 Expansion Data Memory Area, bank 4
0095 Expansion Data Memory Area, bank 5
0096 Expansion Data Memory Area, bank 6
0097 Expansion Data Memory Area, bank 7
0000 None

First Word Address

Function
Specifies the first word address of the specified area in 8 digits BCD.
+24 +25 +22 +23

(leftmost byte) | 8 ' 7 | | 6 ' 5 | | 4 ' 3 | | 2 ' 1 | (rightmost byte)

First word address (8 digits, BCD)

Note: The order of the byte address when setting in 8 digits, BCD is
4,3—-2,1-8,7—6,5 (where the numbers indicate the number
of the digit).

Number of Words

Function
Specifies the number of words in the specified area in 4 digits BCD.
+26 +27
(leftmost byte) | . | | . (rightmost byte)

Number of words (4 digits, BCD)

40

Memory Switches Section 3-3

Example 2 Output Areas: 3 words from CIO 0120 of I/O Memory.
12 words from D24000 of DM Area.

1 Input Area: 2 words from CIO 0032 of I/O Memory.

b7 b0
+20 0 0
+21 8 0 |----- I/0O Memory
+22 0 1
+23 2 0
Ouputareat = o o } - - - From CIO 0120
+25 0 0
+26 0 0
427 0 3 } - - - 3words
+28 0 0
+29 8 2 |- I/0O Memory
+30 4 0
+31 0 0
Output area 2 +32 0 0 } - - - From D24000
+33 0 2
+34 0 0
+35] o } - - - 12 words
0 0
0 0
Output area :F AllO - - - Notset
3t06
0 0
+68 0 0
+69 8 0 |----- I/O Memory
+70 0 0
+71 3 2
472 0 0 } - - - From CIO 0032
+73 0 0
+74 0 0
+75 0 5 } - - - 2words
0 0
0 0
Input area :? AllO S - - - Notset
2to 6
0 0
0 0

41

Setting Memory Switches

3-3-7 GP-IB Setting

Section 3-4

This parameter sets the operation of the GP-IB interface. The parameter is nec-
essary only for the CV500-BSC51 and CV500-BSC61.

Memory Switch: ESW7

ESW7= 8 K
+116 +117

Byte address b7 b0
+117 :E - - - - Address of Talker and Listener

(when set from terminal)

Sets addresses of talker and listener in BCD (00 to 30).
b7 b0

+116 :E - - - - Master/Slave Setting

Master/Slave Setting

Setting Function
00 | Master Sets BASIC Unit as master.
01 | Slave Sets BASIC Unit as slave.

3-4 Setting Memory Switches

42

1,2 3.

The memory switches can be set from a Graphic Programming Console with a
CV-series Memory Cassette connected to the CPU Unit or by a terminal con-
nected to the BASIC Unit. The CVSS is not currently equipped with this feature.

Memory switch settings can be transferred from one CPU Unit to another using
the CVSS and copying the Extended PC Setup onto a Memory Card. Refer to
the Memory Card operations in the CV Support Software: Online Operation
Manual for details.

The following procedures will explain how to set the memory switch using a ter-
minal connected to the BASIC Unit. When the following procedure is completed,
new software memory settings will exist in both the BASIC Unit and the CPU
Unit.

Refer to Appendix J for details on setting methods using Support Software.

1. First, set the BASIC Unit in the machine language monitor mode. When the
message OX is displayed, or while the terminal is in the command input wait
status, input MON followed by a carriage return.

2. A prompt (*) will be displayed and the BASIC Unit will be set in the machine
language mode. Input as follows to set each memory switch. Input up-
per-case characters.

ESwW1=0300
Here, 1 is the memory switch and 0300 is the setting (hexadecimal).

For the settings, refer to 3-3 Memory Switches. The memory switch areas

are as follows:

: System parameters (ESW1)

: Automatic transfer file name (ESW2)

: Terminal/printer ports (ESW3)

: Baud rates (ESW4)

: Terminal specifications (ESW5)

: Cyclic area setting area (ESW6)

: GP-IB setting (ESW?7)

3. Set the cyclic areas as follows:
ESW6-1=0080-0100-0000-0008

Here, 1 is the output/input area no., 0080 is the area type no., 0100 are the
rightmost bytes of the first word address (BCD), 0000 are the rightmost by-

NO O~ WN =

Setting Memory Switches Section 3-4

tes of the first word address (BCD), and 0008 is the number of words (BCD).
This setting sets 8 words beginning from word 100 in the IO memory area as
output area 1.

Output/Input Area Numbers

Qutput area 1t0 6 l1to6
Inputarea 1 t0 6 71012

Area Specifications

I/O Memory Area 0080
Data Memory Area 0082
Expansion Data Memory Area, 0090 to 0097

bank 0 through bank 7

4. After setting all the memory switches, input Esw-w followed by a carriage
return to write the data to the CPU Unit.

43

SECTION 4
Programming Overview

This section provides an overview of BASIC programming and is not meant to provide a comprehensive explanation of BA-
SIC programming.

4-1 BASIC Syntax and Operationsot ut ettt e et 46
4-1-1 Syntax 46
4-1-2 BASIC Operationsttt e 51
4-2 Writing and Entering Programs 62
4-2-1 Preparationsttt e 62
4-2-2 Program Storage Locationst 62
4-2-3 Allocating a Program Areattt 62
4-2-4 Clearing Program Areattt 62
4-2-5 Generating Line Numbers 63
4-2-6 Writing a Program 63
4-2-7 Editing Programs e 64
4-2-8 Deletingin Programs i 65
4-2-9 Copying in Programsttt 65
4-2-10 Merging Programsoouittt i e 66
4-2-11 Changing Line Numbers i, 66
4-2-12 Naming Programsc. ittt 66
4-2-13 Keys Operations in Editing i 67
4-3 Program Execution and Debugging i 67
4-3-1 Preparationsttt et e 67
4-3-2 EXECULIONttt 68
4-3-3 Stopping and Resuming Execution 69
4-3-4 Step EXECUtiON it 70
4-3-5 Tracing Program Execution i, 70
4-4 Saving and Loading Programs i 71
4-4-1 EEPROM 71
4-4-2 Memory Cardst 71
4-4-3 Saving and Loading via Personal Computers 72

45

BASIC Syntax and Operations Section 4-1

4-1 BASIC Syntax and Operations

4-1-1 Syntax

To develop a program in BASIC, an understanding of the syntax and description
of BASIC is essential. This section describes some fundamentals of the BASIC
syntax and programming techniques. For the details of the BASIC syntax, refer
to the BASIC Unit Reference Manual (W207-E1).

Line Numbers and Labels

Line Numbers

Labels

Variables and Constants

Variables

46

A program consists of lines. Each line consists of a line number, executable
statement, a comment statement, and/or a non-executable statement.

10 PRINT ”“BASIC UNIT” Executable statement
20 REM *** BASIC UNIT*** Comment statement
30 DIM A(10) & v Non-executable statement
60 IF A$S = ” " THEN GOTO 40 . Executable statement
90 END & totiiieeie e ieiiiaalinn Executable statement

T Line number

Line numbers are integers from 1 to 65529 and are arranged in ascending order.
The program is executed in the order of the line numbers. The line numbers are
sometimes used to specify the destination to where the program execution is
branched with the GOTO and GOSUB commands.

A label is a name assigned to a line number to specify the branch destination of
such commands as GOTO and GOSUB. With the BASIC Unit, a label must start
with an asterisk (*) and followed by an alphabetic character.

50 GOSUB *LABEL Calling by label

60 GOSUB 80 . vevvvvnnnnnnnnn. Calling by line number
70 END

80 *LABEL . +evvvuinnnnnennnnn. Label

90 RETURN

If a line number is specified as a branch destination, and if the line number
changes when the program is modified, an error will occur. However, if a label is
used, the label will remain the same even when the program is modified.

A computer handles various types of data such as characters and numeric val-
ues. In a computer language such as BASIC, areas called variables in which
data is temporarily stored are used so that a program can be easily developed. A
variable is given a variable name and is assigned a value after substitution or
after an operation has been executed.

BASIC Syntax and Operations Section 4-1

Variable

Data is classified into character data and numeric data. This also applies to vari-
ables, which can be classified into character variables in which character data is
stored and numeric variables in which numeric data is stored. Numeric variables
are further classified into integer variables and real-number variables.
Real-number variables are then further classified into single-precision variables
and double-precision variables. These relationships are shown as follows.

Fixed character length variables
Character variable ﬂ (system variables)

Variable character length variables

Integer variable
Numeric variable . - .
Single-precision variable

Note

Real-number variable —E
Double-precision variable

In addition to the above classifications, variables are also classified into simple
variables which handle only one piece of data, and array variables which handle
more than one piece of data.

—— Simple variables (handle only one value)

Variable —

Array variables (handle more than one value)

The variable name given to a variable is specified by using alphanumeric char-
acters, a period (.), and a declarator. The length of a variable can be up to 40
characters including the declarator. The declarator specifies the type of the vari-
able, as follows:

$... Character

o°

... Integer

... Single-precision real number (this type is assumed if no type declarator is
specified)

... Double-precision real number

For example, A%, Al, A#, and A$ all indicate different variables. If the type decla-
rator is omitted, a single-precision real-number type is assumed, and conse-
quently, A and A! indicate the same variable.

The default length for character variables is fixed at 18 characters. Because of
this, garbage collection is not performed. If character variable length needs to be
changed, use the OPTION LENGTH instruction before PARACT 0. Length
checks are not performed for substitution into character variables.

47

BASIC Syntax and Operations Section 4-1

Constants

The contents (data) of a variable are changed by a substitution or operation. In
contrast, a constant, which indicates a value by itself, is used where data does
not need to be changed. Like variables, constants are classified into character
constants and numeric constants, which are further classified into integer con-
stants and real-number constants. The real-number constants are further di-
vided into single-precision constants and double-precision constants. These re-
lationships are shown below.

Character constant

Constant

Integer constant
Numeric constant ; -
Single-precision constant

Types of Expressions

48

Real-number constant {
Double-precision constant

A character constant usually consists of a character string of 255 characters or
less enclosed by a pair of double quotation marks. These characters can be in
alphanumeric characters and/or symbols.

Examples 712345"
"BASIC UNIT”

Numeric constants are expressed as a positive or negative value, or as 0, and
are specified in decimal, octal, hexadecimal, or exponential format.
Decimal (-32768 t0 32767):

9200 & e
123%

Octal (&0 to &77777):

&123 o e
&0200

Hexadecimal (&HO0 to &sHFFFF):

&HI23 .
&H2B3F

Exponential (single precision) (-3 .4E + 3810 3.4E + 38):

-1.23E + 4 . ..

345.2!

Exponential (double precision) (-1.701411834604692D + 307 to
1.701411834604692D + 307):

=1.23D - 12 . .ol
345.2#

Expressions are classified into numeric, character, relative, and logical expres-
sions depending on the type of the value handled in the expressions.

Numeric expression A+ B
. Character expression "BASIC” + "UNIT”
Expression
Relative expression A > B
Logical expression A AND B

BASIC Syntax and Operations

Section 4-1

Numeric Expressions

Character Expressions

Relative Expressions

Logic Expressions

A numeric expression returns a numeric value and consists of numeric variables
and numeric constants coupled with arithmetic operators. The arithmetic opera-
tors shown in the following table can be used.

Arithmetic operator Operation Example
+ Addition A+ B

- Subtraction A -B

* Multiplication A * B

/ Real-number division A/ B

¥ or \ Integer division A¥B, A \ B
~ Exponent calculation A~ B

MOD Remainder calculation A MOD B

Note ¥ or \ depend on the terminal used.

A character expression returns a character string and consists of character vari-
ables and character constants coupled with an arithmetic operator (+).
Example

"OMRON” + "Corporation”

A relative expression consists of numeric expressions coupled with a relative
operator. The relative operators shown in the following table can be used.

Relative operator Operation Example

= Equal A =B

<>, >< Not equal A <> B, A >< B
< Less than A< B

> Greater than A >B

<=, =< Less than or equal to A <= B, A ==, => Greater than or equal to A >= B, A =>B

A logic expression is used to execute logic operations, manipulate bits, or check
conditions of TF statements. A logic operator is used to form a logic expression.
The logic operators shown in the following table can be used.

Logic operator Operation Example
NOT Negation NOT A
AND Logical product A AND B
OR Logical sum A OR B
XOR Logical exclusive sum A XOR B
IMP Implication A IMP B
EQV Equivalence A EQV B

Result of Operations by Logic Operator

NOT
A NOT A

0 1

1 0

AND

A B A AND B

o |0 o

o |1 o

1 |0 o

1 |1 |1

49

BASIC Syntax and Operations Section 4-1

BASIC Functions

A B A OR B

PP OO
P oRr o
[l el el]

XOR (Exclusive OR)

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

IMP (Implication)
A | B A IMP B

PP OO
P O Rr O
P OoORr K

EQV (Equivalence)
A B A EQV B

P BP OO
P O Rr O
PO OoORr

The BASIC Unit supports many functions in addition to ordinary BASIC func-
tions. A function is used to perform a predetermined operation on a given argu-
ment. Some functions return numeric values, while others return character
strings. These are explained in more detail later in this manual and in the BASIC
Unit Reference manual.

Functions Returning Numeric Values

Function Operation
ABS Gives absolute value
ACOS Gives arc cosine
ASC Gives character code
ASIN Gives arc sine
ATN Gives arc tangent
CDBL Converts integer value or single-precision value into double-precision value
CINT Converts real-number value into integer value
cos Gives cosine
CSNG Converts integer value or double-precision value into single-precision value
CVI/CVS/CVD Converts character string into numeric value
EOF Gives end code of file
ERL/ERR Gives line in which error occurs and error code
EXP Gives value of exponential function
FIX Gives integer
FRE Gives size of unused memory area
INSTR Searches characters string and gives position of character
INT Gives integer value truncated at decimal point
INTRB/INTRL/INTRR | Gives destination line, generation line, and type of interrupt
LEN Gives total number of characters of character string
LOC Gives present value in FILE

50

BASIC Syntax and Operations

Section 4-1

Function Operation
LOF Gives size of FILE
LOG Gives natural logarithm
PEEK Returns contents of specified address
RND Gives random number
SEARCH Searches element of array variable and gives position of character
SGN Checks sign
SIN Gives sine
SPC Outputs blank
SOR Gives square root
TAB Sets column position of screen or printer
TAN Gives tangent
USR Calls machine language function on memory
VAL Converts character string into numeric value
VARPTR Gives storage address of variable

Functions Returning C

haracter String

Function Operation
CHRS Gives character having specified character code
DATES Gives date
HEXS$ Converts into hexadecimal number
INKEYS Inputs only one character
INPUTS Inputs only specified number of characters
LEFTS Gets character string (from leftmost position)
MIDS Gets character string
MKI$/MKSS/MKDS$ Converts numeric code into character code
OCT$ Converts into octal number
RIGHTS Gets character string (from rightmost position)
SPACES Gives blank character string
STRS Converts numeric value into character string
STRINGS Creates character string of specified characters
TIMES Gives time

4-1-2 BASIC Operations

Displaying Data

This section introduces examples of programming for fundamental operations
of the BASIC Unit.

To display data, program as follows by using the PRINT and PRINT USING

To Display “BASIC UNIT”

and Contents of Variable X

commands:
10 PARACT 0
20 X = 10
30 PRINT ”“BASIC UNIT”
40 PRINT "X = ”";X
50 PRINT "X = ",X
60 END
70 END PARACT
11 Result of execution
BASIC UNIT
X =10
X = 10

51

BASIC Syntax and Operations

Section 4-1

Difference Between PRINT
and WRITE Commands

To Specify Display Format

52

If a character (in this example, X) is delimited by “;”, it is displayed immediately
after the character displayed immediately before. If it is delimited by “,”, the
character is displayed from the beginning of the next area (one area consists of
14 characters). In addition, TAB specification that displays the current position of
the cursor as character X coordinate = 0 can also be made.

The WRITE command has a similar function to the PRINT command. The WRITE
command is also used to output data to the screen. With the WRITE command,
the variables and expressions to be displayed are delimited by only commas
when they are specified. They are also delimited by commas when they are dis-
played. To display a character string, it automatically encloses a pair of double
quotation (”) marks. To display a numeric value, unlike the PRINT command, no
blank is placed before and after the numeric value.

Consequently, if the sample program shown previously is written by using the
WRITE command instead of the PRINT command, the display will be as follows:

10 PARACT O

20 X = 10

30 WRITE ”"BASIC UNIT”
40 WRITE "X = ";X

50 WRITE X, 20

60 END

70 END PARACT

ﬂ Result of execution

"BASIC UNIT”
"X = ", lo
10, 20

Sometimes, the data displayed by the PRINT command is hard to see. The
PRINT USING command is used to specify the format in which the data are dis-
played, so that the data is easy to see.

10 PARACT O

20 X = 1234.56

30 PRINT USING "#####.###"”;X

40 PRINT USING “+#####.###";X
50 PRINT USING "X = #####. ##";X
60 PRINT USING "###.#7;1234.5
70 END

80 END PARACT

ﬂ Result of execution

1234.560

+ 1234.560
X = 1234.56
%$1234.5
The number of digits of a numeral, including that of the sign, is specified by the
number of “#” marks. If the number of digits of the data is less than the specified
number of “#” marks, the data is right-justified for display. If the number of digits
is greater, “%” is prefixed to the extra digits of the data.

BASIC Syntax and Operations Section 4-1

To Output Data to Printer

END and STOP Commands
Ending Program

To output data to the printer, use the LPRINT or LPRINT USING command.

10 PARACT O

20 LPRINT “BASIC UNIT”
30 END

40 END PARACT

ﬂ Result of execution

BASIC UNIT

Write the END command at the end of the program. This command closes all
open files and terminates the execution of the program. However, sometimes it
is necessary to stop the program under execution. For example, if a wrong key
has been pressed, or if a certain condition is satisfied, it may be necessary to
stop the program. In this case, the STOP command is used. When this command
is executed, a message is displayed and the program execution is stopped.
10 PARACT O

20 FOR I = 1 TO 100

30 IF 5 - I = 0 THEN STOP

40 PRINT I

50 NEXT I

60 END

70 END PARACT

ﬂ Result of execution

1
2
3
4
t

Stop in 30

Inputting Data From Keyboard

To Input Numeric Data

To input data to the variables in the program from the keyboard, program as fol-
lows by using the INPUT or LINE INPUT command:

10 PARACT 0

20 INPUT A} Numeric data input
30 INPUT B

40 PRINT A, B

50 END PARACT

ﬂ Result of execution

100
? 200
100 200
When the INPUT command is executed, ? is displayed, indicating that the pro-
gram is waiting for the input of data. The program is stopped until data has been
input. Then input a desired numeric value from the keyboard and press the car-
riage return.

53

BASIC Syntax and Operations Section 4-1

To Input Character Data

To Display Message While
Data is Input

Variable Name and
Reserved Word

54

If an attempt is made to input character data in the above example, an error oc-
curs. To input a character, $ must be suffixed to a variable name. This means that
for the variable name specified by the INPUT command, the data type of the vari-
able must be specified by $, depending on the type of the data to be input.

10 PARACT O

20 INPUT AS } Character data input
30 INPUT BS

40 PRINT AS; BS
50 END PARACT

ﬂ Result of execution

? BASIC

? UNIT

BASIC UNIT

For example, to input integer type numeric value in the above program, $ must
be suffixed to the numeric value, like 2% and B%. To input a numeric value of
double-precision real-number type, # must be suffixed.

The INPUT command is used to input data to a variable while the program is
executed. However, it may be unclear which data is to be input if only “?” is dis-
played when the INPUT command has been executed. To clarify which data
should be input, therefore, a message can be displayed before “?”.

10 PARACT O

20 INPUT “NAME”;AS

30 INPUT “TEL ”;B$S

40 PRINT “NAME “;AS$,”TEL ”;BS
50 END PARACT

ﬂ Result of execution

NAME? OMRON

TEL ? 123-4567

NAME OMRON TEL 123-4567

As shown above, if a character string specified is enclosed in a pair of double
quotation marks () before a variable name, the specified character string can
be displayed when data is input. Note that the character string must be delimited
by a semicolon (;) from the variable name.

As described earlier, any name can be given to a variable. However, the names
used for commands and functions must not be used as the names of variables.
For example, PRINTS$ and INPUT% must not be used as variable names be-
cause these names are command names. The names that must not be used by
the user are generically called reserved words or keywords. A list of reserved
words are presented in Appendix G.

BASIC Syntax and Operations Section 4-1

Operations

To Perform Arithmetic
Operation

To process data through operations, program as follows by using operators and
arithmetic functions:

To perform an operation, use arithmetic, relative, and logic operators described
earlier.

10 PARACT 0

20 PRINT 10/3

30 PRINT 10%¥3%

40 PRINT 10%/3#

50 END PARACT

ﬂ Result of execution

3.33333

3

3.333333333333333

The above program is to execute a division and display the result. The result dif-
fers depending on the data type (such as integer, single-precision real-number,
and double-precision real-number).

On line 20, the operation is performed with single-precision real-numbers, and
the result is rounded at the sixth digit. Therefore, five or less digits are displayed
as the result.

On line 30, the operation is performed with integer values. Therefore, the data is
truncated at the decimal point.

On line 40, a single-precision real-number variable and double-precision
real-number variable are processed. If the precision of a variables differ, the
higher precision takes precedence. In this case, therefore, the double precision
takes precedence. Consequently, the data is rounded at the 16th digit, and dis-
played in 15 digits or less.

55

BASIC Syntax and Operations

Section 4-1

Priority of Operators

Each operator is assigned priority as shown in the following table. Relative oper-
ators are not assigned priority in respect to each other, and are executed in se-
quence starting from the left.

Priority Operator Operation Classification
1 () Gives priority to () Expression in ()
2 Numeric function Returns numeric value Function

Character function Returns character string
3 ~ Exponential operation Arithmetic operator
4 - Negative sign
5 *, Multiplication, division of real number
6 ¥ or \ Division of integer
7 MOD Remainder
8 +, - Addition, subtraction
9 = Equal to Relative operator
<>, >< Not equal to
<, > Less than, greater than
<=, =< Less than or equal to
>=, => Greater than or equal to
10 NOT Negation Logic operator
11 AND Logical product
12 OR Logical sum
13 XOR Logical exclusive sum
14 IMP Implication
15 EQV Equivalence
16 = Substitutes right member into left member Substitution

Character Operations The only operation available for character variables and character constants is
adding (coupling).

10 PARACT 0

20 AS$ = “BASIC”

30 B$S = "UNIT”

40 PRINT A$ + BS

50 END PARACT

ﬂ Result of execution

BASIC UNIT

Changing Program Flow
It may be necessary to change the flow of the program execution according to
the result of an operation or conditions. The BASIC Unit can change the flow of
program execution by using the following program control commands:

Instruction Operation
FOR TO STEP NEXT Repeatedly executes program enclosed by FOR and NEXT commands the specified number
of times
GOSUB RETURN Calls subroutine and returns from subroutine
GOTO Unconditionally jumps to specified line number

IF THEN ELSE/
IF GOTO ELSE

ON GOSUB/ON GOTO
WHILE WEND

Selects line to be execution in accordance with result of relative or logic expression

Branches to specified line

Repeatedly executes a series of commands until condition is satisfied

56

BASIC Syntax and Operations Section 4-1

To Repeat the Same
Process

To Specify Conditions for
Repetition

Repeating the same processing is called a loop. Loop processing can be im-
plemented by using the FOR TO STEP NEXT command. This command re-
peatedly executes the processing enclosed between FOR and NEXT.

FOR variable name = initial value
TO end value STEP increment

(Processing to be repeated >

NEXT variable name

Loop processing can also be performed by using the GOTo command. However,
if the number of times the processing to be repeated is fixed, the FOR TO STEP
NEXT command is used. A sample program using this command is shown be-
low.

90 ’'Calculate even sum and odd sum from 0O through 100.
100 PARACT O

110 A% = 0

120 B% = 0

130 FOR I%=0 TO 100 Sum of even numbers and odd numbers
from 0 to 100

140 J%=I% MOD 2

150 IF J%=0 THEN A%=A% + I% ELSE B%=B% + I%

160 NEXT I%

170 PRINT ”“"The even number sum 0 through 100?”;A%
180 PRINT ”"The odd number sum 0 through 100?”;B%
190 PRINT

200 END

210 END PARACT

ﬂ Result of execution

The even number sum 0 through 100? 2550
The odd number sum 0 through 100? 2500
The FOR TO STEP NEXT command can also nest loops as follows:

— FOR I = 1 TO 10

[FOR J = 1 TO 15

Loop 1 — Loop 2 — <— Loop 2 is set as a nest of box.

NEXT J

—— NEXT I
The variable name of NEXT can be omitted.

Instead of specifying the number of times for the FOR TO STEP NEXT com-
mand, it may be necessary to specify a condition under which repetition should
be executed, for example, when the number of times the execution is to be re-
peated is not known such as when the processing is to be executed until x = 0.
In this case, the WHILE WEND command is used as follows:

WHILE relative expression

(Processing to be repeated)

WEND

57

BASIC Syntax and Operations Section 4-1

To Execute the Same
Processing at Different
Locations

58

Indefinite loop where relative expression is 1
Example:
WHILE 1 to WEND

The WHILE WEND command executes the processing enclosed between
WHILE and WEND until the condition specified by the relative expression is not
satisfied (i.e., becomes false (0)).

The FOR TO STEP NEXT command is used to repeat the same processing at
the same location. However, it may be necessary to repeat the same processing
at different locations, depending on the program. For example, if the same pro-
cessing should be executed to various measured data, and if the same program
is described for each measured data, the program becomes redundant. In this
case, a subroutine is created and called as required by using the GOsuUB and
RETURN commands.

GOSUB label name of subroutine (xxx) Calls subroutine
GOSUB label name of subroutine (xxx) Calls subroutine
XXX to
Subroutine
RETURN

¢

The following is a sample program using the GOSUB RETURN command.

Calling and returning from subroutine

100 PARACT O

110 *START

120 PRINT ”“Program calculating area of circle”
130 INPUT ”“Input radius (to end, radius = 0)"”;R%
140 IF R%=0 THEN END

150 GOSUB *CAL

160 PRINT ”"Area of radius ”;R%;” is ”;S!;".”

170 GOTO *START

180

190 *CAL v teiiiiiiiiiaaaannn. Subroutine calculating area of circle
200 8! = 3.14*R%*R%

210 RETURN . ..ovvunnnnnnnnnnn End of subroutine by RETURN

220 END

230 END PARACT

ﬂ Result of execution

Program calculating area of circle
Input radius (to end, radius = 0)°?5
Area of radius 5 is 78.5

Program calculating area of circle
Input radius (to end, radius = 0)0
Ok

BASIC Syntax and Operations Section 4-1

As shown above, by using subroutines the program can be divided into several
modules so that it can be easy to see and develop and so that the same process
can be executed from different locations.

Program Program
Task 1 Task 1
Operatiqn Task 2
processing
Task 2 Task 3
Operation Operation
processing processing
Task 3
Operation
processing

RETURN Command Ending When a subroutine is called, a return address is stored in a memory area so that

Subroutine the program execution can be returned to the main routine after the subroutine
has been executed. This memory area is called a stack. To return the execution
from a subroutine to the main routine, the return address is restored from the
stack by the RETURN command.

Calling Subroutines

Stack
Main program

P \\\\\\ :
. ~ '
// Subroutine N !
/ B N Return address —
GOSUB ; N
| ' \
| Return address | 1 f
A /
\\ RETURN /
\ \/ /
/
N /
N s
N s
~ P
\\ //
\\ -

—————

Only one level can be restored by the RETURN command. This means that to call
another subroutine (2) from one subroutine (1) as shown below, the RETURN
command is necessary for each subroutine.

Main program

Subroutine 1

GOSUB _/

GOSUB

Subroutine 2

RETURN
RETURN

59

BASIC Syntax and Operations Section 4-1

Changing Processing To select and execute processing according to the result of a relative expres-
According to Conditions sion, the IF THEN ELSE or IF GOTO ELSE command is used.
Example
IF relative expression THEN| line no.| ELSE| line no.
string string
label label

The following is a sample program using the IF THEN ELSE and IF GOTO
commands.

Conditional branch operation

100 PARACT 0

110 *START

120 PRINT ”0: End 1: Sum 2: Difference 3: Product”

130 INPUT ”Select from menu”;I%

140 IF I%=0 THEN END When the input value is 0

150 IF I%>3 OR I%<0 THEN GOTO *EPROCESS

160 INPUT "A”;A#

170 INPUT “B”;B#

180 IF I%=1 THEN PRINT A#;”+";B#;”=";A#+B# ELSE *NEXT1
....... When the input value is 1

190 GOTO *START

200 *NEXT1

210 IF I%=2 THEN PRINT A#;”-";B#;”=";A#-B# ELSE *NEXT2
....... When the input value is 2

220 GOTO *START

230 *NEXT2

240 IF I%=3 THEN PRINT A#;”*";B#;"=";A#*B#

When the input value is 3
250 GOTO *START

260 *EPROCESS . .vvvvvvvnnnn. When the input value is other than
above

270 PRINT” ** * INPUT ERROR***”

280 GOTO *START

290 END

300 END PARACT

1l Result of execution

0: End 1: Sum 2: Difference 3: Product
Select from menu? 1

A ? 42

B ? 39

42 + 39 = 81

0: End 1: Sum 2: Difference 3: Product
Select from menu? 3

A ? 81

B ? 27

81 *27 = 2187

0: End 1: Sum 2: Difference 3: Product
Select from menu? 0

Changing Processing To select a line number to which the execution is to branch according to the value
According to Value of an of an expression, the ON GOSUB or ON GOTO command is used.
Expression

ON expression{ GOSUBH line no} { line noH line no....}
GOTO label label label

Example

ON ABC GOSUB 1000, 2000, 3000, *suB3, 5000
ON X1% GOTO *LAB1, 1500, *LAB3, *LAB4

60

BASIC Syntax and Operations Section 4-1

If the value specified by the numeric expression is 1, the execution branches to a
line number specified first. If the value is 2, the execution branches to a line num-
ber specified second. If the value is 3, the execution branches to a line number
specified third. A sample program using the ON GOSUB and ON GOTO com-
mands is shown below.

Expression value branch

100 PARACT O

110 *PRCS

120 PRINT ”“(1: Sum 2: Difference 3: Product 4: End) ”;
130 INPUT ”"Select number”;A%

140 IF A%<l OR A%>4 THEN PRINT ”“INPUT ERROR!!”: GOTO
*PRCS

150 IF A%=4 GOTO *E

160 PRINT ”“Input 2 integers”

170 INPUT S1%

180 INPUT S2%

190 ON A% GOSUB *PLUS, *MINUS, *MULT

200 GOTO *PRCS

210 *E & oot When 2% is 4
220 END

230

240 *PLUS . c'iiiiiiiinnnnnn. When A% is 1
250 PRINT S1%;”+";S2%"=";S1%+S2%

260 RETURN

270

280 *MINUS . tivniiiiiinnnnn... When 2% is 2
290 PRINT S1%;”"-";S2%"=";S51%-S2%

300 RETURN

310

320 *MULT &+ oeiieeieieinennnnn When 2% is 3
330 PRINT S1%;”"*";S2%"=";S51%*S2%

340 RETURN

350 END PARACT

ﬂ Result of execution

(1: Sum 2: Difference 3: Product 4: End) Select number?
1

Input 2 integers

? 12

? 23

12 + 23 = 35

(1: Sum 2: Difference 3: Product 4: End) Select number?
3

Input 2 integers

? 31

? 23

12 * 23 = 713

(1: Sum 2: Difference 3: Product 4: End) Select number?
4

ON GOSUB and ON GOTO functions are similar to each other. When ON GOTO is

used, the destination will not be the same subroutine as ON GOSUB.

61

Writing and Entering Programs Section 4-2

4-2 Writing and Entering Programs

4-2-1 Preparations

When developing or editing program, the uppercase and lowercase characters
are not distinguished.

The uppercase and lowercase characters are also not distinguished in describ-
ing variable names, constant names, and array names. However, they are dis-
tinguished in character strings and comments.

When the program is displayed by the LI ST command, it is displayed in upper-
case characters.

Enable writing with the memory protect switch.

4-2-2 Program Storage Locations

When programs are input from a terminal, they are created in the user program
source program area. Commands that read the program to the terminal, such as
LIST, handle the program as source code.

When programs are executed they are automatically compiled into execution
code and moved into the program execution area, requiring a certain amount of
processing time. If the same program is executed a second time without alter-
ation, this processing time is eliminated.

When programs are written to or read from EEPROM, the entire program area is
copied as source code. Because the entire area is always copied, the size of the
program does not affect the processing time.

When programs are written to or read from a Memory Card, only the program
with the designated program number is transferred.

If the Memory Switches are set to specify automatic program transfer or auto-
matic starting, the source code is loaded and recompiled each time the BASIC
Unit is started. The Memory Switches can be set to transfer the program from a
Memory Card or from EEPROM.

4-2-3 Allocating a Program Area

1,2, 3... 1. Allocate areas to develop and store the program. Three areas are available,
each of which separate programs can be developed and stored.
PGEN_27 « vevrernnnnnnnnnnn 2 is the program no. (1 to 3)
2. Confirm that the program area has been allocated.
PINF -
3. The following information is displayed:
No. ‘ PNAME , __S-CODE , __E-CODE . GLOBAL . LOCAL
1 ‘ TEST ‘ 41 ‘ ‘ ‘
*2 4
3 4
FREE 64207 112276

* on the left of No. indicates the area currently used.

4-2-4 Clearing Program Area

62

If a program previously developed or used remains in the allocated program
area, clear the area. If the program is given a name, first delete the name by us-
ing the PNAME command, and clear the program area with the NEw command.
PNAME " "2 & ceeeeeenennnnnnn. Deletes program name

NEWZ & eeeeeeeeeeeeenennnnnnnns Clears program area

If the program is not given a name, the program can be cleared only with the NEW
command.

Writing and Entering Programs Section 4-2

4-2-5 Generating Line Numbers

Generate line numbers automatically by using the AUTO command.

AUTO_100,52 « cevernennnnnnnn. 100 is the start line no. and 5 is the in-
crement.

In this case, the program starts from line 100, and the line number is increm-

ented by 5.

The specification of increment can be omitted, in which case, the program line
number is incremented by 10.

AUTO_ 1002 . cevrrieennnnnnnn. 100 is the start line no.

Both the start line number and increment can be omitted, in which case, the pro-
gram with line number 10 is incremented by 10.

AUTO»

In this case, the following messages are displayed. Input the program below
these messages.

AUTO

Ok
10

To end generation of the line numbers, input CTRL+X, CTRL+C, Of press carriage
return after the line numbers have been displayed.

Line numbers can also be manually input one at a time without using the AuTO
command.

4-2-6 Writing a Program

Note

Input and write the program along with line numbers. Each line must end with a
carriage return. A new line number will automatically be displayed. Continue in-
putting the program.

As an example, input the following program:

Key Input

PARACT_0»

A=3:B=4-

FOR_I=1_TO_37

A=A+Bo

PRINT A

NEXT_ I

ENDy

END_PARACT

Program

10 PARACT 0
20 A = 3
30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END

80 END PARACT

Input CTRL+X, CTRL+C, Or press carriage return to end generation of the line
numbers.

=4
03

H

B
1
B

The BASIC Unit is provided with a multitasking function by which more than one
task (program) can be processed in parallel. The programs in the BASIC Unit
should be written in units of tasks. PARACT 0 on line 10 in the above example
program is a command indicating the beginning of a task. A task can be num-
bered 0 to 15. END PARACT on line 80 indicates the end of a task. For further
information, refer to 6-2 Multitasking.

63

Writing and Entering Programs Section 4-2

4-2-7 Editing Programs

Changing Overwrite/Insert

Mode

Editing Program in
Overwrite Mode

64

1,2, 3.

1,2, 3.

To edit a program, use the EDIT command. With this command, read and edit
one line of the developed program at a time.

To edit programs, it is necessary to write characters over existing characters
(overwrite mode), or insert new characters between existing characters (insert
mode).

With BASIC, the mode is changed between the overwrite and insert modes with
the memory switch (refer to 3-3-5 Memory Switch/Terminal Specification Setting
Area).

To change the mode, read the program with the EDIT command, and then input
CTRL+R or INS Key. The mode is alternately changed each time CTRL+R or INS
Key has been input. However, after one line has been edited, the setting of the
memory switch is assumed.

‘ Power application ‘

|

\ Default is set to the insert mode \

|

| Type in as EDIT_10- |

| Press CTRL+R or INS Key |

| Mode is set to overwrite |

| Press CTRL+R or INS Key |

| Mode is set to Insert |

. Turn the Power ON.
. Insert mode by memory switch.
. Type as EDIT _10-

. Press CTRL+R or INS Key to change the mode to overwrite mode.
or
Press CTRL+R or INS Key again to change the mode to insert mode.

A W DN =

The following procedure changes I=1 on line 30 into I=2.

1. Read the program.
EDIT 3072 « tevvrennnnnnnnn. 30 is line no. to edit

Writing and Entering Programs Section 4-2

2. The program of line 30 is displayed as follows. Move the cursor to the posi-
tion of 1 by using the Left Key.
EDIT 30
Ok
30 FOR I = 1 TO 3

3. Input 2 followed by carriage return. This has edited the program.

EDIT 30
Ok
30 FOR I = 2 TO 3
Inserting Characters The following procedure inserts I before PRINT 2 on line 50.

1,2, 3. 1. Type EDIT_50-
2. The line to be edit is displayed as follows, then move the cursor to the posi-
tion A with the Left Key.

EDIT 50
Ok
50 PRINT A

3. Change the mode from the overwrite to the insert mode by pressing CTRL +
R or INS Key.
4. Insert 1 followed by carriage return.

EDIT 50

Ok

50 PRINT I,A

This has inserted T and edited the program.

4-2-8 Deleting in Programs

Deleting Characters The following procedure deletes A+ of A=A+B on line 40 of the following pro-
gram.

1,2,3... 1. TypeEDIT _ 40,
2. The line to be deleted is displayed as follows, then move the cursor to the
position B with the Left Key.

EDIT 40

Ok

40 A = A + B

[BS][BS][] or [DEL][DEL][]

Note The BS Key of the CVSS has the same function as the DEL Key. How-
ever, depending on the terminal, the character at the cursor position
is deleted by the DEL Key.

EDIT 40
Ok
40 A = B
3. The program is edited when the carriage return is pressed.

Deleting Line The following procedure deletes line 40 in the above sample program.

To do this, only input the line number or use the DELETE command.
40— or DELETE_40-

More than one line can also be specified at a time by specifying a range as fol-
lows:

DELETE_120-150%vvnen... 120 is the beginning line no. which re-
quires editing and 150 is the end line
no. which requires editing

4-2-9 Copying in Programs

The following procedure copies program line 50 of the sample program below to
line 55.

1,2,3... 1. Type EDIT 50

65

Writing and Entering Programs Section 4-2

2. The line to be copied is displayed as follows, then move the cursor to the
position 0 with the Left Key.
EDIT 50

Ok
50 PRINT I,A

3. Input the number of the line to which line 55 is to be copied.
Type 53

4. This has copied the contents of line 50 to line 55.
EDIT 50

Ok
55 PRINT I,A

5. Next, A of line 50 is changed to B.

6. Move the cursor to the position of A. Input B and then carriage return.
EDIT 50
Ok
55 PRINT I,B
Any part of the program can be copied and edited. In addition to the above meth-
od, the line to be copied can be displayed by inputting, say EDIT 50, and a new
line can be created by changing the program and line number at the same time
and then pressing carriage return.

4-2-10 Merging Programs

The MERGE command can be used to add another program to the existing pro-
gram. Be sure that the line numbers in the two programs do not overlap.

4-2-11 Changing Line Numbers

To put line numbers in order and assign new line numbers, the RENUM command
is used.
RENUM-

In the following example, the program is changed so that the first program line
starts with 100 and the program lines are incremented by 10:

RENUM_100,10,102 100 is the new first line, left 10 is the old
first line, and the right 10 is the incre-
ment

In the above example, the line numbers of the existing program are changed, so
that the program starts with line 100, instead of 10, and the line numbers are
incremented by 10. The program lines less than 10 are left untouched.

The line numbers specified for GOTO and GOSUB commands are automatically
changed by the RENUM command. Therefore, it takes some time to complete the
processing. Wait until the message OK is displayed.

4-2-12 Naming Programs

66

To identify the contents of a program, a program name is given to each program
area by the PNAME command. When a program name has been given, the pro-
gram cannot be erased by the NEw command.

PNAME_"SAMPLE” 2 . cueucuvuunnn.. SAMPLE is the program name

When the PNAME command is executed without specifying a program name, the
existing program name is deleted.

PNAME_" ">

After this, a new program name can be given by another PNAME command.

Program Execution and Debugging

Section 4-3

4-2-13 Keys Operations in Editing

The following tables shows the keys that can be used in editing operations.

Key Operation

Left Key Moves the cursor to the left. This key is invalid while the cursor is at the beginning of a line.

Right Key Moves the cursor to the right. This key is invalid while the cursor is at the end position of a
line + 1 column.

Up Key Moves the cursor up. If this key is pressed while the cursor is at the top line, the cursor
moves to the leftmost position. If the cursor is at the leftmost position of the top line, this key
is invalid.

Down Key Moves the cursor down. If this key is pressed while the cursor is at the bottom line, the
cursor moves to the bottom position of the + 1 column. With the cursor at this position,
further pressing of this key is invalid.

Return Executes editing functions and rewrites the program. After that, line feed and carriage return

are performed.

SHIFT+HOME/CLR

Moves the cursor to the first position of a line. If the cursor is at the top line, this key is
invalid. This function is not provided to the CVSS.

CTRL+H or BS

Deletes the character at the left of the cursor. This key is invalid with the cursor at the
leftmost position of a line.

DEL

Deletes the character at the cursor position. This key is invalid while the cursor is at the
rightmost position + 1.

CLR or CTRL+L

Clears the entire screen and moves the cursor to the home position (upper left). The
processing under execution is canceled.

CTRL+E

Deletes the characters starting from the cursor position to the end of the line.

CTRL+R or INS

Switches between the overwrite mode and insert mode. Either the overwrite or insert mode
is assumed according to the setting of the memory switch when editing is started by the
EDIT command.

CTRL+X or CTRL+C

Terminates the execution of the AUTO or EDIT command.

Note 1. SHIFT+HOME CLR represents the pressing of the HOME CLR Key while
holding down the SHIFT Key.

2. CTRL+L represents the pressing of the L Key while holding down the CTRL
Key.

3. The edit function is executed when the carriage return has been pressed,
and the program in the BASIC Unit will be rewritten accordingly.

4. The DEL Key and BS Key of CVSS are the same. In addition, HOME CLR
and SHIFT+HOME CLR Keys are invalid.

4-3 Program Execution and Debugging

4-3-1 Preparations

The BASIC Unit is provided with commands that execute or debug the program.

To start or stop the program, the following commands are used:

RUN, STOP, BREAK

To resume program execution, or execute the program on a step-by-step basis,
these commands are used:

CONT, STEP
To display the execution status of the program, these commands are used:
TRON, TROFF

67

Program Execution and Debugging Section 4-3

Note

4-3-2 Execution

1,2, 3.

By using the above commands, the program is debugged. As an example, the
following sample program is debugged.

10 PARACT 0
20 A = 3

30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END

80 END PARACT

Execution can also be stopped from the keyboard by inputting CTRL-X or
CTRL-C. When CTRL-X is input, all execution, including I/O processing, will be
aborted immediately and “Quit in ...” will be displayed. STEP and CONT cannot be
used after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and
CONT cannot be used.

Data received while program execution is stopped may not be retrievable after
CONT is executed. To avoid this problem, make sure that data has been received
and jump to the address defined with ON PC before setting the BREAK point.

1. To execute the program, use the RUN command.
RUN, ERASE
2. Specify ERASE to clear the non-volatile variables.

3. Display and confirm the sample program. (LIST)
4. Execute the program. ERASE can be omitted.

5. Type RUN and press ENTER to execute the program.

LIST
10 PARACT O
20 A = 3
30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END
80 END PARACT
Ok
RUN

7

11

15
Ok

6. If an error is found on a line of the program while the program is executed,

the execution is stopped at that point, and the line number and an error mes-
sage identifying the nature of the error are displayed. To correct the error,
display the line by using the EDIT command, input the correct command,
and press the carriage return. Then input again and execute the program by
the RUN command. If another error message is displayed, correct the pro-
gram in the same manner and execute it again.

=4
0 3

H

B
1
B

Displaying Execution Result Commands can be input or directly executed from the terminal without assigning

68

line numbers. The values of variables immediately after the program has been
executed can be displayed and checked by the PRINT command.
Type PRINT_A, I
PRINT A, I
15 4
Ok

Program Execution and Debugging Section 4-3

4-3-3 Stopping and Resuming Execution

STOP Command

CONT Command

BREAK Command

1,2, 3.

1,2, 3.

The sToP command is inserted in the program in advance. When the program is

executed and the STOP command is reached, the program is stopped. In the fol-

lowing example, the STOP command is placed at line 55.

55 STOPD & teeieieieaennnn. 55 is the line number into which sToP
command is inserted.

1. Execute the program.

RUN>
2. The program is stopped at line 55 by the STOP command and the line num-
ber (55) is displayed.
55 STOP
RUN
7
Stop in 55

To resume the program stopped by the STOP command, the CONT command is
used.
CONT~
Erase line 55. (557)
CONT
11
Stop in 55
CONT
15
Stop in 55
CONT
Ok
55

The program execution can also be stopped by the BREAK command. With this
command, the line where execution is to be stopped is specified. This method
stops the execution without modifying the program. Up to 10 lines, where the
execution is to be stopped, can be specified.

BREAK 20,702 « vvvvvnnnnnnnn. 20 and 70 are the line nos. where the
program is required to break

1. First specify a break line execute the program. (RUN-)

2. Displays a message and stops the program before executing line 20. Then
resumes execution. (CONT>)

3. Displays a message and stops the program before executing line 70. Then
resumes execution. (CONT~)

BREAK 20, 70
Ok
RUN
Break in 20
CONT
7
11
15
Break in 70
CONT
Ok
To cancel the effect of the BREAK command, use the BREAK DELETE com-
mand.

BREAK_DELETE_207 . cevvvnn... 20 is the break line no

BREAK _DELETE_ALLD . «u.vuvn... ALL means all break lines are deleted

BREAKD + tvtiieennnnnnnnnnnnns BREAK means the set break line is dis-
played

69

Program Execution and Debugging Section 4-3

4-3-4 Step Execution

1,2, 3.

After stopping the execution of the program, the program can be executed one
line at a time by the STEP command.
STEP-

1. First, specify a break point and execute the program.
BREAK 20
RUN

2. The program execution is stopped at line 20. Then four steps of the program
are executed on a step-by-step basis. (STEP-)

3. 7 is displayed.

4. Display the contents of 2 and B by the PRINT command.
PRINT_A, By

5. Resume execution by the CONT command.
CONT~

6. Clear the break point. (BREAK_DELETE_ALL7y)

BREAK 20
Ok
RUN
Break in 20
STEP
STEP
STEP
STEP
STEP
7
PRINT A, B
7 4
CONT
11
15
Ok
BREAK DELETE ALL
Ok

Note Since line 20 is a multi-statement, the STEP command must be executed two

times to execute this line. Also, because the execution code (E code) is an inter-
mediate code, sometimes one STEP command will execute two consecutive
lines and sometimes two STEP commands will be required to execute one line.

4-3-5 Tracing Program Execution

70

1,2 3.

The line numbers of the program under execution can be displayed in the order
of execution by the TRON command. This function is canceled by the TROFF
command.

TRON_ 172 & teveeeeieeniannnnnnn 1 is the task no.

TROFF_ALL D & veeetiennnnnannnn ALL is the task no.

If ALL is specified instead of the task number, the line numbers of all the tasks
are traced (or tracing is canceled). If neither a task number nor ALL is specified,
the current task is traced.

1. Starts tracing. (TRON7)
2. Run the program (RUN-). Then displays line number under execution.

3. Cancels tracing (TROFF<). Then starts tracing task 1.

TRON

Ok

RUN

[10][20] [30][40][50] 7
[60]1[40][50] 11

Saving and Loading Programs Section 4-4

[60]1[40]1([50] 15
[60]1[70] Ok
TROFF
Ok
TRON 1
Ok
RUN
7
11
15
Ok
When @ is input, the number of the task under execution can be checked.

4-4 Saving and Loading Programs

EEPROM
Floppy Disk

Memory Cards

4-4-1 EEPROM

4-4-2 Memory Cards

Note

Note

The program can be saved to/loaded from the following three devices:

If the BASIC Unit is provided with EEPROM, all the three programs in the source
code area can be saved to or loaded from the EEPROM.

Each program can be saved to or loaded from a floppy disk by the save/load
function of the computer with terminal mode connected to the BASIC Unit.

If the CPU Unit is equipped with a memory card, the program can be saved to or
loaded from the memory card.

To load the program, set the memory protect pin of the DIP switch to the OFF
position. Otherwise, an error will occur.

Pin no. DIP switch setting

1 Terminal resistor (OFF)

2 Not used (OFF)

3 Memory switch (invalid) (OFF)

4 Memory protect (OFF)

With the BASIC Unit with EEPROM (CV500-BSC21/41/61), the program can be
saved to or loaded from the EEPROM. In addition, the program in the EEPROM
can be verified.

To save the program, use the ROMSAVE command.

When this command is executed, the contents of all the user program areas are
written to the EEPROM.

ROMSAVE,

To read (load) the program written to the EEPROM to the user program areas,
use the ROMLOAD command.

ROMLOAD>

All the contents of the EEPROM are read to all the user program areas. Conse-
quently, the current contents of the user program areas are erased.

To compare the contents of EEPROM and those of the user program areas, use
the ROMVERIFY command.

ROMVERIFY-

This command verifies the contents of the user program areas with those of EE-
PROM. If a discrepancy is found, the message “VERIFY ERROR” is displayed.

If the above three commands are executed with the BASIC Unit not equipped
with EEPROM, an error occurs.

The program of the BASIC Unit can be saved to or loaded from the memory card
of the CPU Unit. The memory card must be formatted in advance by a Memory
Card Writer.

71

Saving and Loading Programs Section 4-4

To save the program to the memory card, use the SAVE command.

SAVE_”"0:SAMPLE” 2 0 is the device name (0: memory card),
and SAMPLE is the file name

The contents of the program area currently used are saved to the memory card

under a specified file name in text format (in displayed image). If the specified file

name already exists in the memory card, the contents of the existing file are

changed.

To load the contents of the memory card to the program area of the BASIC Unit,

use the LOAD or MERGE command.

To Load New Program:

LOAD_"0:SAMPLE” 2 . c.vvvenn... 0 is the device name (0: memory card),
and SAMPLE is the file name

The LoaAD command clears the currently used area and loads the program to

that area.

To Load Additional Program:

MERGE_”0:SAMPLE" > 0 is the device name (0: memory card),
and SAMPLE is the file name

The MERGE command loads an additional portion of a program to the area cur-

rently used.

Only files of text format can be loaded. If a file of specified file name does not

exist on the memory card, an error message is displayed. If the line numbers of

the program loaded by the MERGE command overlap the line numbers of the ex-

isting program, the line numbers of the newly loaded program take precedence.

4-4-3 Saving and Loading via Personal Computers

72

Personal computer editing operations can be used to create source programs in
the BASIC Unit or transferred programs between the personal computer and the
BASIC Unit. Connect the personal computer to the terminal port of the BASIC
Unit as proceed as described next.

Use the following program to load programs from the personal computer to the
BASIC Unit.

1,2, 3... 1. Use an editor in the personal computer to create a source program consist-
ing of BASIC Unit commands as a file in memory or on a disk.

2. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.

3. Create a program in the personal computer to do the following.
a) Send the L.,oAD command to the BASIC Unit to initialize reception.
b) Send the program created in step 1. one line at a time to the BASIC Unit.
¢) Send the file end code after the last line of the source program has been
sent.
Use the following program to save programs from the BASIC Unit to the personal
computer.
1,2, 3... 1. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.
2. Create a program in the personal computer to do the following.
a) Send the LIST command to the BASIC Unit to have the BASIC Unit out-
put one line at a time of a source program.
b) Store each line of the program being read into the personal computer
into a file in memory or on a disk.
c) Detect “OK” in the transmission from the BASIC Unit to determine the end
of the transmission.
The following sample program can be used as reference in program develop-
ment. If there are problems with loading using this program, increase the time on
line 340.

Saving and Loading Programs

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

Section 4-4

*kkkkkkKk*k

*kkkkkkk*k

*kkkkk kK

CPU Unit-BASIC UNIT UPLOAD/DOWNLOAD

*kkkkkKk*k

*kkkkkkk*k

*kkkkkkk

>>This program uploads/downloads programs created on the CPU Unit from/to

the BASIC Unit.
*SELECT

INPUT “SELECT L (LOAD (Computer->BSC))/S(SAVE (BSC->Computer)) ---";k$

IF K$="L"” GOTO *PCBSC
IF K$="K” GOTO *BSCPC

. GOTO *SELECT

———— DOWNLOAD (Computer to Basic Unit) --——-

<<<Caution>>>

If a program name is registered, use PNAME

*PCBSC

ON ERROR GOTO *EEE

OPEN ”“COM:N83XN” AS #1

OPEN ”BSCTEMP.BAS” FOR INPUT AS #2

B$S="LOAD #1,”+CHRS (&H22)+”COMU: ”"+CHRS (&H22)

*CMND

PRINT #1,BS

LINE INPUT #1,AS

IF A$<>BS GO TO *CMND
*LOOP

FOR TT=1 TO 100
LINE INPUT #2,AS
PRINT #1,A$+CHRS (13);
GO TO *LOOP

*BEEE

PRINT #1,CHRS (&H1A)
LINE INPUT #1,AS
CLOSE #1 CLOSE #2
END

NEXT

———— UPLOAD (Basic Unit to Computer) —---—
*BSCPC
OPEN “COM:N83XN” AS #1
OPEN "BSCTEMP.BAS” FOR OUTPUT AS #2
BS="LIST”"

PRINT #1,BS
LINE INPUT #1,AS

*LOOPS

LINE INPUT #1,AS

IF A$="0K” THEN *FINAL

PRINT #2,AS
GOTO *LOOPS
*FINAL

CLOSE #1
END

CLOSE #2

"7 to delete it in advance.

Breaks at file end.

8 bits, no parity, 2 stop bits
Opens source file.
Preparing for LOAD

Sends =
Reads command echoback
Checks =

Waits for BASIC load processing
Reads one line of source program

Loops until end of file is reached

Sends file end code
Reads “0k” echoback

8 bits, no parity, 2 stop bits
Opens file to save in
Preparing for LIST

Sends =

Reads command echoback

Reads one line from file

Checks for end

Sends one line

Loops until end of file is reached

CLOSE

73

SECTION 5
Data and Files

This section provides information on data management and operations for the BASIC Units.

5-1 Data OPerationsouune ettt e e e e 76
5-1-1 Handling NumericData i, 76
5-1-2 Handling Character Data i, 79
5-1-3 Handling Large Quantitiesof Data o iia... 81
5-1-4 Handling Time Data i 82
5-1-5 Data Input/Outputin Program i, 83
5-2 File OPerationsttt ettt e e e e 84
5-2-1 FleS .o 84
5-2-2 Manipulating DataFiles 85

75

Data Operations Section 5-1

5-1 Data Operations
5-1-1 Handling Numeric Data

Tvpes of Numeric Data

The numeric data the BASIC Unit handles is classified into integers and real
numbers, as shown below, and can be expressed in various formats.

— Octal

Integers — — Decimal

. —— Hexadecimal

Numeric data
Single-precision
real number

Real numbers —

Double-precision
real number

Octal Format In this format, the numeric data is expressed in numerals 0 through 7 with &0 or &
prefixed. With the BASIC Unit, up to 5 digits of octal numbers can be expressed
(from 0 to 77777).
Examples:
&0123
&256

Decimal Format The BASIC Unit can handle decimal integers from —32768 to +32767.

Examples:
-256
123%
Hexadecimal Format In this format, the numeric data is expressed in numerals 0 through 9 and alpha-

betic characters A through F with &H prefixed. The BASIC Unit can represent
hexadecimal numbers from 0 to FFFF.

Examples:

&H123

&H2EAF
Single-precision Real The numeric data of this type is expressed using up to 5 digits with the sixth digit
Numbers rounded. The range of the numeric data is from —3.4E+38 to 3.4E+38 for vari-

ables and —3.40282E+38 to 3.40282E+38 for arithmetic results. The represen-
tation format of single-precision real number can be any of the following:

o Number of six digits or less
e Exponential format with E
o With ! suffixed to numeral

Examples:

3.21
-1.23E + 4
345.2!

Double-precision Real The numeric data of this type is expressed with up to 15 digits with the 16th

Numbers digit rounded. The range of the numeric data is therefore from
—1.701411834604692D+307 to 1.701411834604692D+307. The representa-
tion format of double-precision real numbers can be any of the following:

o Number of seven digits or less
o Exponential format with D
* With # suffixed to numeral

76

Data Operations

Exponential Format

Section 5-1
Examples:
9876543210
-1.2345D - 12
345.21 #

12345.6789098

When a number with many digits is handled, writing many Os is cumbersome
and can cause errors in the program. Therefore, the BASIC Unit employs an ex-
ponential format to handle a number having many Os. For example, to express
number 12300000, it is simpler and easier to read by expressing it using an ex-
ponent, as follows:

=1.23 x 10000000
=1.23x 107

With the BASIC Unit, this exponent is represented as follows:
= 1.23E+7 ... (single-precision real numbers)

= 1.23D+7 ... (double-precision real numbers)

Here, 1. 23 is called the mantissa, while E+7 and D+7 are called the exponents.
This representation method is called exponential format. The relationship
among the numbers and units of the exponent are as follows:

Indication Number Name Symbol

E-3 0.0001 milli m
E-6 0.0000001 micro u
E-9 0.0000000001 nano n

E-12 0.0000000000001 pico p

E+3 1000 kilo K
E+6 1000000 mega M
E+9 1000000000 giga G
E+12 1000000000000 tera T

Number Precision and Type Conversion

Usually, the same type of numbers are operated (for example, an integer is oper-
ated with an integer, and a single-precision number is operated with a
single-precision number). On some occasions, however, various types such as
integer, single-precision real numbers, and double-precision real numbers must
be mixed when executing an operation. On these occasions, the type having the
highest precision takes precedence and the other types are converted into that
type.

10 PARACT O

20 PRINT 10%¥3% Integers

30 PRINT 10%/3! Integer and single-precision real num-
bers

40 PRINT 10!/3# . .cccnn.... Single-precision real-numbers and

double-precision real-numbers
50 END PARACT

ﬂ Result of execution

3
3.33333
3.333333333333333

To determine the types of variables at the beginning of a program, the DEFINT,
SNG, DBL, or STR command is used.

77

Data Operations

Section 5-1

Examples:
DEFINT A

DEFSNG B
DEFDBL C

DEFSTR D

Specifies variable name starting with A
as integers

Specifies variable name starting with B
as single-precision number

Specifies variable name starting with ¢
as double-precision number

Specifies variable name starting with D
as character

To perform batch conversion of variable types from 2 to D, the range of type must
be specified as follows, by using a hyphen:

Example:
DEFSNG B -

Numeric Operation Functions

List of Functions Executing
Arithmetic Operations

78

E . oot

Converts all types of variables with
names starting with B, C, D, or E into
single-precision number.

The BASIC Unit supports the following functions to execute arithmetic opera-
tions based on numeric data.

Function Meaning
ABS Gives absolute value
ACOS Gives arc cosine
ASIN Gives arc sine
ATN Gives arc tangent
CDBL Converts into double-precision real number
CINT Converts into integer
cos Gives cosine
CSNG Converts single-precision real number
CvI/cvs/cvD | Converts character string into numeric value
EXP Gives value of exponential function
FIX Gives integer
INT Truncates at decimal point
LOG Gives natural logarithm
RND Gives random number
SGN Gives sign
SIN Gives sine
SOR Gives square root
TAN Gives tangent

Data Operations

Section 5-1

5-1-2 Handling Character Data

The BASIC Unit also handles character data in addition to numeric data. When
characters are handled as data, various commands and functions that manipu-
late character strings in various manners are necessary. The BASIC Unit there-
fore supports the following character string manipulation commands and func-
tions.

The length of a character variable is fixed, and the default length is 18 characters
unless otherwise specified. If more than 19 characters are specified as a charac-
ter variable, the excess characters are ignored, but no error occurs. To handle
more than 19 characters, the necessary length (i.e., number of characters) must
be declared by the DIM or OPTION LENGTH command. The maximum number
of characters in a string is 538.

Functions Retrieving Part of Character String

To Check Character String
Length

To Retrieve n Characters
from Ends of Character
String

To Retrieve Characters
from Character String

For functions that retrieve the specified number of characters from a specified
location of a character string, or that check the number of characters of a charac-
ter string, LEFT$, RIGHTS, MID$, and LEN are used.

The LEN function checks the number of characters of a character string.

Example:

L = LEN(AS) & civiriiennnnnn Stores the number of characters of
string A$ in L

The LEFTS and RIGHTS functions retrieve n characters from the left and right

ends of a character string, respectively.

Examples:

A$ = LEFTS (”"BASIC UNIT”,2) Stores the lefttwo characters “Ba” from
“BASIC UNIT”in AS

A$ = RIGHTS (”BASIC UNIT”,5)
Stores the right five characters “_uNIT”
from “BASIC UNIT”in AS

The MID$ function retrieves the specified number of characters from the speci-
fied position of a character string.

Example:

A$ = MIDS$ ("BASIC UNIT”,7,3)
Stores three characters “UNI” from “BA-
SIC UNIT” starting from the seventh
character position from the left in A3

Functions Searching a Character String

To Search and Return from
Character String

The INSTR function searches a specified character string from a character
string and returns its position.
Example:
X = INSTR(”ABCDEFGH”,"E")
Checks the position of “E” in “ABC-
DEFGH” and stores the result, 5, into X
If the specified character string is not found, 0 is returned. In the above example,
even if more than one “E” exists, only “E” at the leftmost position in the character
string can be found because the character string is searched starting from the
left. To search a character string at a specified position, therefore, a position from
which the search is to be started must be specified.

Example:

X = INSTR(6,”ABCDEFGHE”,"E")
Searches for “E” after the 6th character
position in “ABCDEFGHE". If “E” is found,
its position (in this case, 9th position) is
stored into variable X

79

Data Operations

Section 5-1

Functions Creating Character String Consisting of Identical Characters

To Arrange Identical
Characters

To Arrange More Than One
Space

The STRINGS or SPACES function is used to arrange identical characters or
spaces.

The STRINGS function is used to arrange as many of the identical characters as
required.

Example:

A$ = STRINGS (10,”*”) Stores character string consisting of 10

*f**********iinK)A$
The maximum number of characters that can be arranged by this function is 538.

If two or more different characters are specified, only the one specified first is
assumed.

The sPACES function arranges as many spaces as required.
Example:

AS$ = SPACES$(10) . ..cennn.... Stores 10 spaces into A$

Commands Rewriting Part of Character String

To Change Only Part of
Character String

To change only part of a character string, the MID$ command is used. Note that

the MID$ command is different from the MID$ function in use.

MIDS (AS,X,Y)=BSo..... As is the character string rewritten, X is
the position of character to or rewritten,
Y is the number of characters rewritten,
and B is the contents to be replaced
(character string)

Y characters from xth position of A$ are replaced by Y characters of BS.

The number of characters to be rewritten can be omitted. In this case, the num-
ber of characters specified in the left member is assumed. As an example, the
following program replaces character string “ABCDE” with “OMRON”.

10 PARACT 0

20 AS = "ABCDE”

30 PRINT AS

40 BS = "OMRON”

50 MIDS (AS$,1) = BS

60 PRINT AS
70 END PARACT

ﬂ Result of execution

ABCDE
OMRON

Functions Converting Numeric Value and Character String

To Convert Numeric Value
into Character String

To Convert Character String
into Numeric Value

80

On some occasions, programming is easier if numeric values are handled as
characters. For example, numeric values are easier to see if each three digits
are delimited by a comma (,) as 123,000, or if Os are prefixed to unify the number
of digits, as 0012, 0123, and 0001. To perform processing of this kind, it is neces-
sary to convert numeric values into character strings. The STRS function is used
for this purpose.

Example:

AS = STRS(1234) Stores the character string “1234” in A3
To convert a character string into a numeric value, the VAL function is used.
Example:

A = VAL(1234) . ceiiiinn... Stores character data “1234” in A as nu-

meric value 1234

Data Operations

Section 5-1

5-1-3 Handling Large Quantities of Data

When handling a large quantity of data in a program, programming is extremely
difficult if separate variable is used for each data item. To facilitate programming,
therefore, variables called array variables are used. Array variables can specify
more than one data item under one variable name, and are classified into one-di-
mensional array variables and multi-dimensional (two-dimensional, three-di-
mensional, and so on) variables.

One-dimensional Array and Multi-dimensional Array

Use of Array Variables

Declaring Array Variables

An array variable consists of a variable name followed by a numeric value en-
closedin (). This numeric value is called a subscript. An array variable having
only one subscript is called a one-dimensional array. An array having two sub-
scripts is called a two-dimensional array, and the one having three subscripts is
called a three-dimensional array. Generally, an array variable having two or
more subscripts is called a multi-dimensional array.

Examples:

X = A(5) v i Stores A (5) of one-dimensional array
into X

Y = B(3,3) ¢ i Stores B(3, 3) of two-dimensional array
into Y

For example, (12, 54, 33, 95, 28) can be represented by one array variable A as
A(0),A(1),A(2),A(3),andA(4).

Subscript 0 1 2 3 4
Data 12 54 33 95 28

The two-dimensional array is used to represent the data that can be represented
by rows and columns. For example, suppose that three parameters, voltage,
current, and temperature, are each measured three times. The first measured
data set of voltage, current, and temperature, (3, 5, 20), the second data set (2,
4, 21), and third data set (4, 6, 25) can be represented by a two-dimensional
array as follows:

Subscript 0 (voltage) 1 (current) 2 (temperature)
0 (first time) 3 5 20
1 (second time) 2 4 21
2 (third time) 4 6 25

Assuming the array variable name to be 2, the second measured data of voltage
is specifiedas A (1, 0), and the third measured data of temperature is specified
asA(2,2).

When using an array variable with the BASIC Unit, first declare the array variable
by using the DIM command. The number of array elements that can be specified
by one array variable is not restricted, but limited by the memory capacity of the
variable area.

Example:

DIM A(1,3) +iririiiinnnnnn. Allocates 2 x 4 = 8 array elements as
array variable A (two-dimensional array)
of numeric data.

ﬂ Result of execution

A(0,0) A(0,1) A(0,2) A(0,3)
A(1,0) A(1,1) A(1,2) A(1,3)
The above array elements are allocated in memory.

81

Data Operations

Section 5-1

Setting Lower-limit Value of
Subscript

Array of Character Variables

Usually, the subscript of an array starts from 0. However, it can be specified to
start from 1 by using the OPTION BASE command.

Example:

OPTION BASE 1
DIM A (2,3)

ﬂ Result of execution

A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)

2 x 3 = 6 array elements are allocated in memory. The declaration made by the
OPTION BASE command cannot be changed once it has been made.

A character array of up to 538 characters can be handled by using a character

variable name.

DIM A$(50) 538vvnvnnn.. Defines one-dimensional character array
variable having maximum character
storage area of 538 characters

Here, A$ (50) is the character variable array name, and 538 is the maximum

number of characters.

5-1-4 Handling Time Data

To Check Current Time

DATES$ Function

82

The BASIC Unit also supports functions that handle time data such as dates and
hours.

To check the current time, the TIMES function is used.

10 PARACT 0
20 T$ = TIMES

30 HHS = LEFTS$ (TS, 2)

40 MMS = MIDS (TS, 4, 2)

50 SSS = RIGHTS (TS, 2)

60 PRINT”Current time is ”;HHS;”:”;MMS$S;”:";SSS;"."
70 END

80 END PARACT

ﬂ Result of execution

Current time is 23:07:26.

This function is used to check the current date.

10 PARACT 0
20 D$ = DATES

30 YY$ = RIGHTS (DS, 2)

40 DD$ = MIDS (Ds$, 4, 2)

50 MMS$ = LEFTS (DS, 2)

60 PRINT”Today is ”;MMS$;”—-";DD$;"—";YYS;”.”
70 END

80 END PARACT

ﬂ Result of execution

Today is 07-26-91.

Data Operations

Section 5-1

5-1-5 Data Input/Output in Program

To Simplify Data
Input/Output in Program

To Read DATA Command
Using READ Command

To read data by a program, the INPUT command or substitution statement such
as A = Bis used. However, if a large quantity of data is to be handled or if the
input data is known in advance, describing the INPUT command or substitution
statement is inefficient and not necessary. To simplify data input/output in the
program, the READ and DATA commands are used.

The DATA command reads data (constants) continuously to the program. These
data items are automatically read to specified variables by the READ command.
A sample program using the DATA and READ commands is shown below.

10 PARACT 0
20 READ AS$; BS . vevvrnvnn... Reads character data from data state-
ment on line 70
e Reads numeric data from data state-

ment on line 80

30 READ C, D, E

40 PRINT AS$; BS

50 PRINT C; D; E

60 END

70 DATA “BASIC”,”UNIT” Character data known in advance
80 DATA 10, 16, 1990 Numeric data known in advance
90 END PARACT

ﬂ Result of execution

BASIC UNIT

10 16 1990

The READ and DATA commands are always used in pairs. The DATA command
can be described anywhere in the program because it is a non-executable state-
ment. As many DATA commands as required can be used in one program.

An error occurs if

e The number of character constants of the DATA command is read by the nu-
meric variable of the READ command (the numeric constant of the DATA com-
mand can be read as a character string by the character variable of the READ
command),

e The data of the DATA command has run out while the READ command is ex-
ecuted, or

e DATA of another task has been read.

If more than one READ and DATA command exists, data is read in the execution
sequence of the program. However, it may be necessary for the READ command
to read the DATA command on specified line. In this case, the RESTORE com-
mand is used. Note, however, that the DATA command of another task must not
be specified. A sample program using the RESTORE command is shown below.

10 PARACT 0

20 RESTORE 100

30 READ AS, BS . covvinnn.... Reads character data from date state-
ment on line 100

40 RESTORE 90

50 READ C, D, E . .icouunn... Reads numeric data from data state-
ment on line 90

60 PRINT AS; BS

70 PRINT C; D; E

80 END

90 DATA 10, 16, 1990 Numeric data known in advance

100 DATA ”"BASIC”, UNIT Character data known in advance

110 END PARACT

83

File Operations

Section 5-2

ﬂ Result of execution

BASIC UNIT
10 16 1990

5-2 File Operations

5-2-1 Files

A BASIC Unit file manages a cluster of program information and data. Files are
classified by the contents or access mode as seen in the following:

Data File and Program File

Program File

Data File

Note

Files can be classified by contents into program files and data files.

A program file is a BASIC source program file created by using the editing com-
mands of the BASIC Unit. This file can be read from or written to the memory
card of the CPU Unit by the SAVE, LOAD, or VERIFY commands.

10 OPEN...

20 PRINT...
30 IF...THEN...

A data file is a file recording the data used by a program file. This file is opened by
the OPEN command, and read or written by the PRINT, WRITE, INPUT, PUT, Or
GET commands. It is closed by the CLOSE command.

100 30 70

60 11 23
74 49 86

The BASIC unit reads or writes the memory card of the CPU Unit as program and
data files.

Sequential/Random Access File

Sequential File Access

Random Access File

84

Files can be classified by data access mode into two types: sequential file and
random access file.

A sequential access file is sequentially read or written starting from the begin-
ning of the file and is also known as a consecutive file.

Data 1 Data 2 Data3 | ... Data n

A random access file is read or written in units called records (one record is fixed
to 256 bytes with the BASIC Unit). This file can be accessed more quickly than
the sequential file.

Record 1 Record 2 Record 3

.......... Record n

<-(256 bytes)s

File Operations

Section 5-2

The sequential access file and random access file each have their own features,
seen as follows:

Feature Sequential access file Random access file
Data access Can only be read from beginning | Can be read/written starting from any location (in record units)
Data length Can be changed freely Fixed
Changing data | Entire file must be updated Can be changed in record units
Adding data Data is written at the end of file Can be written to any position
Data type Numeric data, character data Numeric data must be converted into character data

5-2-2 Manipulating Data Files

File Names

&Caution

Opening/Closing Files
Opening

To input/output a file, a memory area called a buffer is used to temporarily store
data. The number assigned to this buffer is called a file number. One buffer cor-
responds to one file, and therefore, one buffer cannot be used by more than one
file. The file numbers that can be used are from #1 through #15. This means that
the maximum number of data files that can be simultaneously used is 15.

Data Buffer - File

,,,,,,,, | ' Memory card

With the BASIC Unit, the data file can be read only by the memory card. In this
case, a file name must be given to the file. A file name must consist of eight char-
acters or less and start with an alphabetic character. A device name 0: is pre-
fixed to the file name to access the memory card. In addition, an extension con-
sisting of up to three characters can also be suffixed.

"0:MFILE.DAT” . teiiiennnnn.. 0 is the device (0: memory card),
MFILE is the file name, and DAT (pre-

ceded by “) is the extension
If the file name consist of 9 or more characters, or if the extension consists of 4 or
more characters, the excess characters are ignored and thus not recognized. A
period (.) must proceed the extension. A file name can also be specified in char-

acter string.

Although file names in the BASIC Unit can consists of any characters except;, .,
and blanks, lowercase letters and the ¥ symbol can cause problems on DOS
machines and should be avoided.

A file is opened by the OPEN command. Once a file has been opened, the file
number assigned to that file must not be used by any other files until closed by
the cL.LoSE command. The OPEN command specifies a file name, mode, and file
number. The mode does not need to be specified for a random access file.
Opening Sequential Access File
OPEN ”0:DATA2” FOR OUTPUT AS #1

0:DATA?2 is the device and file name,

OUTPUT is the mode setting, and #1 is
the file number.

Three modes can be specified: INPUT (to read data from a file), OUTPUT (to write

data to the file), and APPEND (to add data to the file).

Opening Random Access File

OPEN ”0:SAMPLE” AS #1 0:SAMPLE is the directory and file
name, and #1 is the file number.

If the mode is omitted, the random access file is assumed.

85

File Operations

Section 5-2

Closing

To end inputting/outputting of a file, the file number allocated by the OPEN com-
mand must be released by using the CLOSE command to close the file. When the
CLOSE command is executed, the data remaining in the buffer is written to the
file, so that the file number assigned to that file can be used by other files. There-
fore, the CLOSE command must be used in conjunction with the OPEN command.
When the END or STOP command is executed, the open files are automatically
closed.
CLOSE #1,#2 . cuvvivinnnnnnn.. #1 and #2 are the file numbers (several
files can be closed simultaneously) and
if omitted, all files are closed

Operation of Sequential Access File

Opening File With OPEN
Command

In OUTPUT and APPEND
Modes

In INPUT Mode

Closing Using the CLOSE
or END Command.

86

Data is sequentially written to a sequential access file starting from the begin-
ning of the file. Any part of data cannot be rewritten, and only new data can be
added to the end of the file.

OPEN ”0:DATA2” FOR OUTPUT AS #1
0:DATA?2 is the directory and file name,
OuTPUT is the mode setting, and #1 is
the file number

OUTPUT: write

INPUT: read
APPEND: additional write

In the above example, sequential file DATA2 is opened under file name of #1 to
output data to the file.

WRITE #1,A$,BS
READ #1,AS$,BS
#1 is the file no., and A$ and B$ are the variables

Character data given by character variables A$ and Bs are written file #1 in the
order of A$ and Bs.

INPUT #1,A$,BS . .cooivnn.... #1 is the file no., and A$ and B$ are the
variables

Sequential data is read from file #1 and stored into A$ and BS.

CLOSE #1 & ciiiiiiiiannannnnn. #1 is the file no.
When a file opened for output is closed, all the data remaining in the buffer is
written to the file and then the file is closed.

The following sample program illustrates the above process:

10 PARACT 0

20 OPEN ”0: DATA2” FOR OUTPUT AS #1
30 A$ = "BASIC”: B$ = "UNIT”

40 WRITE #1, AS$, BS

50 CLOSE #1

60 OPEN ”“0: DATA2” FOR INPUT AS #1
70 INPUT #1, AS, BS

80 PRINT AS, BS

90 CLOSE #1

100 END

110 END PARACT

ﬂ Result of execution

BASIC UNIT

File Operations

Section 5-2

Program Example of
Sequential Access File

Here is an example of operating a sequential access file.

'Sequential file
90 PARACT 0
100 DIM F$30
110 OPEN “0: DATA2” FOR OUTPUT AS #1
Opened to output new sequential file

120 A$=" OMRON ”

130 B$=" BASIC "

140 C$="UNIT"

150 D$="BASIC UNIT”

160 WRITE #1,AS$,BS Data output to sequential file (data com-
pression)

170 PRINT #1, USING " & & & &";Cs$,D$
Data output to sequential file with format

180 GOSUB *WRT

190 CLOSE . viiviiiennnnnnnn.. Closes opened file

200 OPEN “0: DATA2” FOR INPUT AS #1
Opens sequential file for input

210 PRINT “Contents of data file are as follows”

220 LINE INPUT #1, F$ Reads one entire line to character vari-
able (F$)

230 PRINT F$

240 LINE INPUT #1, F$

250 PRINT F$

260 GOSUB *RD

270 CLOSE

280 END

290 7

300 *WRT v tiienerinnnnnnnnn. Processing to output data to sequential
file

310 INPUT ”"Input data (999 to end writing) ”;ES
320 IF E$=7999” THEN RETURN

330 PRINT #1, ES Data output to sequential file

340 GOTO *WRT

350 -

360 *RD v vvvviieennnnnnannnnn Processing to input data from sequential
file

370 IF EOF (1) THEN RETURN Branches if data runs out

380 INPUT #1, GS$o...... Reads data

390 PRINT GS$S
400 GOTO *RD
410 END PARACT

11 Result of execution

999 to end writing)?1
999 to end writing) ?2
Input data (999 to end writing) ?3
Input data (999 to end writing) ?999
Contents of data file are as follows

Input data
Input data

UNIT BASIC UNIT

” OMRON ", " BASIC ”
UNIT BASIC UNIT
1

2

3

87

File Operations

Section 5-2

Operating Random Access File

The data length of a sequential access file can be set freely. Data of a random
access file is read or written in record units, and the data length is fixed in record
units. However, the random access file can be accessed more quickly than the
sequential access file since data (record) can be read or written in any se-
quence. Only character data can be used with the random access file. To write
numeric data, it must be converted into character data by the MKI$, MKSS$, or
MKDS$ functions when it is written. When reading data, it is converted back to nu-
meric data by the cvI, cvs, or cvD functions.

Numeric data for random access files is converted into character data as seen in
the following diagram.

Numeral
data

GET
MKIS PUT
MKSS
MKDS
Buffer Random access file
CVI
Cvs
CVD
LSET OPEN
REET CLOSE
FIELD

Character string data

Programming Sequence

88

1,2, 3.

1. Open a file using the OPEN command.
OPEN “0:DATA3” AS #10 . DATA3 is the directory and file name,
and #1 is the file number
To read/write data from/to random access file DATA3, the file is opened un-
der file number 1.

2. Assign variable areas to the buffer in record units by using the FIELD com-
mand.
FIELD #1, 5 AS AS$, 18 AS BS
#1 is the file number, 5 is the field
width, and AS is the character variable
A 5-byte variable area is assigned under variable name A$ and an 18-byte
area is assigned under variable name B¢ to the I/O buffer of the random ac-
cess file opened under file name #1. To assign an area of more than 19 by-
tes to a character variable, allocate a variable area at the beginning of the
program by using the OPTION LENGTH command. More than one charac-
ter variable can be specified, but keep the total field width to within 256 by-
tes.

3. To write data to a file, set the data in the buffer by the LSET or RSET com-
mand, and write the data to a record of the file from the buffer by using the
PUT # command.

LSET AS$ = "BASIC” A$ is the variable name, BASIC is the
character sting.

To write, left-justified, character string BASIC to variable area (buffer) of

variable name A$.

RSET B$ = "UNIT” BS is the variable name, UNIT is the
character string

File Operations

Section 5-2

The

To write, right-justified, character string UNIT to variable area (buffer) of

variable name BS.

PUT #1,8 + ciinnnnn #1 is the file number, 8 is the record
number (1 through 32767)

The data in the buffer is written to the eighth record of the random access file

opened under file number #1.

. Use the GET # command to read data from the file.

GET #1,8 . cevvvvvnnnnnnn.. #1 is the file number, 8 is the record
number (1 through 32767).

The data is read to the buffer from the eighth record of the random access

file opened under file number #1. This data is stored into a variable defined

by the FIELD command, and therefore, can be displayed by the PRINT

command.

. Close the file by using the C1L.OSE command.

CLOSE #1 . cevvvvvvinnnnn.. #1 is the file number.

The file opened under file number #1 is closed.

following sample program illustrates the above procedure.
10 OPTION LENGTH 20

20 PARACT 0

30 OPEN ”0: DATA3” AS #1

40 FIELD #1, 15 AS A$, 20 AS BS

50 LSET AS$S = “BASIC”
60 RSET BS$ = “UNIT”
70 PUT #1, 8
80 GET #1,8

90 PRINT AS; BS
100 CLOSE #1
110 END

120 END PARACT

ﬂ Result of execution

BASIC UNIT

Program Example of Random Access File

10

90

100
110
120
130
140
150
160
170

180
190
200
210
220
230

240
250
260

'Random file
'
.

PARACT 0
DIM AS50
ON ERROR GOTO *ERPRCS Setting of error processing routine
OPEN ”0:DATA3” AS #1 . Opens random file
FIELD #1, 50 AS A$ Assigns variable area
PRINT “Input [W] to write file.”
PRINT “Input [R] to read file.”
PRINT ”“Input [E] to end.”
BS=INPUTS (1) Conditional input from buffer to charac-
ter string
IF B$="w” OR B$="W” THEN GOSUB *WRT
IF BS="r” OR B$="R” THEN GOSUB *RD
IF B$="e” OR B$="E” THEN GOSTO *E
GOTO 140
*E
PRINT “Data file size is” ;LOF (1) ;"
Size of file by record number
CLOSE #1 . «evvviiinnnnn.. Closes file
END

89

File Operations

Section 5-2

90

270
280
290

300

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

520
530
540

FIWRT v ottt ieeeeeeennnn Write subroutine
INPUT ”"Record no. (1-999):”;REC%
IF REC%>999 THEN ERROR 1

Sets error generation number (ERR
1)

IF REC%<1 THEN ERROR 2 Sets error generation number (ERR =
2)

LINE INPUT ”DATA:";C$

PRINT “Writes data (Y/[ELSE])"”

DS=INKEYSovvvvnnnn. Inputs 1 character from keyboard
IF D$S="” THEN GOTO 330

IF DS=< >”"Y” AND D$< >”y” THEN RETURN

LSET A$=CS . civeeen.. Sets data in buffer

PUT #1, REC%oun... Writes buffer data

RETURN . .uviiiiinnnnnnn.. End of write subroutine

FRD & vtieieeie i Read subroutine

INPUT “Record no. (1-999):”;RECS%

IF REC%>999 THEN ERROR 1

IF REC%<1l THEN ERROR 2

GET #1, REC% . .evvnnn... Reads data to buffer

PRINT AS

RETURN . c'vviiriennnnnn.. End of read subroutine
FERPTCS & vveeeeeennnnnnn. Error processing routine

IF ERR=1 THEN PRINT ”"Record no. is too large.”

IF ERR=2 THEN PRINT ”“Record no. is too small.”

IF ERL=440 THEN PRINT ”“The record no. has NO data.”
When reading data fails

RESUME 140

END PARACT

ﬂ Result of execution

Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 3
Data: 3

Writes data (Y/I[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 4
Data: 4

Writes data (Y/I[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 3

3

Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Data file size is 4.

SECTION 6
Advanced Programming

This section advances further into BASIC programming and provides information on interrupts, multitasking, and machine
language for the purposes of advanced programming.

-1 INEEITUPES . .ottt e e 92
6-1-1 Defining an Interrupt Service Routine 92
6-1-2 Interrupt-related Instructions i 93
6-1-3 Interrupt Programming 93
6-1-4 Interrupt TYpesot 94
6-1-5 Interrupt Processing Details i 96
6-2 Multitasking e 97
6-2-1 Tasks ... o 97
6-2-2 Declaration of Start & End of Task Program 98
6-2-3 Starting, Aborting, and Waiting foraTask 99
6-2-4 BASIC Unit Status and Transitionso it nnenen .. 103
6-2-5 Inter-task Communicationouuiuminieneunenaneenanann.. 104
6-3 Machine Languagettt e 107
6-3-1 Segments and Offsetsttt e 108
6-3-2 Developing a Machine Language Program 108
6-3-3 Examining and Altering Memory with BASIC 111
6-3-4 Calling a Machine Language Subroutine 112
6-3-5 Storage Formats e 114
6-3-6 Machine Language Programming Summary 118
6-3-7 Machine Language Monitor Commandsc.vuiuininon... 119
6-4 PC COMMUNICALIONS . . . o .ottt ettt et e e e e e e e e e e et 120
6-4-1 SEND(192) and RECV(193) it e 120
6-4-2 CV-series (FINS) Commands0t 123

91

Interrupts

Section 6-1

6-1 Interrupts

Interrupt Processing

An interrupt is one means by which a device connected to the BASIC Unit can
inform the program that some event has occurred and that some action on the
part of the program is required immediately. For example, when a character is
received by a communications port, the program must stop whatever it is doing
and read the character as soon as possible so that the input buffer does not over-
flow. When an interrupt occurs, the BASIC Unit may stop executing the current
task and run an interrupt service routine instead. When the service routine is fin-
ished, control is returned to the task that was executing before the interrupt.

Interrupts can also be used to restart a task which has been stopped by the
PAUSE statement.

Main program

§ Interrupt service routine

Interrupt occurs

The BASIC Unit supports several different interrupts which indicate various con-
ditions. The table below lists the interrupt types and related BASIC instructions.

Interrupt Type Meaning BASIC Instructions
TIMES Time ON TIMES GOSUB TIMES ON/OFF/STOP
ALARM Elapsed time ON ALARM GOSUB ALARM ON/OFF/STOP
TIMER Time interval ON TIMER GOSUB TIMER ON/OFF/STOP
KEY (key-number) Numeric key pressed ON KEY GOSUB KEY ON/OFF/STOP
coM Input from communication port ON COM GOSUB COM ON/OFF/STOP
PC Interrupt from CPU Unit ON PC GOSUB PC ON/OFF/STOP
FINS Interrupt from network ON FINS GOSUB FINS ON/OFF/STOP
SIGNAL signal-number Signal received from another task ON SIGNAL GOSUB SIGNAL ON/OFF/STOP

ERROR

Error occurred

ON

ERROR GOSUB

ERROR ON/OFF/STOP

6-1-1 Defining an Interrupt Service Routine

92

Before interrupts of a certain type can be processed, the program must define an
interrupt service routine to be called when that type of interrupt occurs. The oN
interrupt-type GOSUB { line-number | label } instruction is used for this purpose.
The line-number or label indicates the start of the service routine. Interrupt ser-
vice routines must end with a RETURN statement.

Interrupts

Section 6-1

6-1-2 Interrupt-related Instructions

Note

Interrupts usually occur asynchronously; that is, the program cannot know when
an interrupt will occur. However, there may be sections of the program which
should not be interrupted. For example, if an interrupt occurs while the program
is performing a time-critical calculation, the result of the calculation will be
delayed and the program may miss its deadline.

Therefore, the BASIC Unit provides the interrupt-type ON, OFF, and STOP in-
structions, which may be used to enable, disable, or temporarily delay interrupts
of the specified type.

The interrupt-type ON instruction enables interrupts of the specified type; after
this instruction is executed, the interrupt service routine will be called each time
an interrupt is received.

The interrupt-type OFF instruction disables interrupts of the specified type; after
this instruction is executed, the BASIC Unit will ignore those interrupts. Inter-
rupts during OFF execution for coM, PC, and FINS, however, are handled the
same as those during STOP execution, as described next.

The interrupt-type STOP instruction disables interrupts of the specified type, but
any interrupts received while the interrupt is STOPped will be recorded, and the
interrupt service routine will be called if the interrupt is later enabled.

Interrupts from a source are disabled (turned OFF) immediately after an interrupt
service routine for that type of interrupt is defined (or re-defined) with ON inter-
rupt-type GOSUB. Furthermore, interrupts are sTopped while the interrupt
service routine is being executed.

An interrupt can be accepted while an input instruction is being executed. When
an interrupt-type ON instruction occurs while an input instruction is being
executed, the input instruction will be interrupted and the interrupt service rou-
tine as defined by the interrupt will be executed. If all I/O data has not been pro-
cessed when the interrupt occurs, the data will be discarded and the instruction
ended.

An interrupt will be STOPped if the another interrupt from the same source oc-
curs before interrupt processing is completed. To produce effective interrupts,
write multitasking programs so that each interrupt is executed independently
(for example: ON COM2 combined with INPUT or ON PC combined with PC
READ). If interrupts are combined during single task execution, PC STOP must
be executed during INPUT.

There is no priority ranking for the interrupts listed above. If an interrupt is

received during the execution of any interrupt subroutine, the later one interrupts
the earlier one and is executed.

6-1-3 Interrupt Programming

1,2, 3.

To write a program that makes use of interrupts:
1. Select the type of interrupt to be used and develop an interrupt routine. Be
sure to use a RETURN statement at the end of the routine.

2. Define the interrupt routine in the main routine using the ON interrupt-type
GOSUB statement.
3. Use the interrupt-type ON instruction to enable interrupts.

4. If an interrupt occurs, the interrupt routine will be executed. Execution con-
tinues at the point where the interrupt occurred when the interrupt routine’s
RETURN statement is executed.

5. Use interrupt-type STOP if necessary to protect sections of the program from
interruption. Use interrupt-type OFF when you are no longer interested in in-
terrupts.

93

Interrupts Section 6-1
Interrupt Programming Example
100 PARACT O
110 ON KEY (1) GOSUB 700 . . Define interrupt service routine
[}
X Interrupts from numeric
: key 3 are ignored.
[}
200 KEY(1) ON . .evvvvvnnnnn. Enable interrupts
[}
' If numeric key 3 is pressed
: here, the interrupt service
' routine will be called.
[}
300 KEY(1) OFF . vevvrnnnnn.. Disable interrupts
[}
: Interrupts from numeric
: key 3 are ignored.
[}
600 END . .ovvrrniannaannnnn. End of main routine
700 ’'Start of KEY 1 interrupt routine
:
)
800 RETURNcovveeunnnnn. End of interrupt service routine

6-1-4 Interrupt Types

Timer Interrupts

Interrupt at Specified Time

Interval Interrupt

Elapsed Time Interrupt

Numeric Key Interrupts

94

The BASIC Unit supports three types of timer interrupts. These interrupts occur
at a specified time (TIMES), at specified time intervals (TIMER), or when a spe-
cified time has elapsed (ALARM).

The ON TIMES$ GOSUB statement defines an interrupt routine to be executed at
a specified time. For example:

100 ON TIMES = ”02:30:10” GOSUB 1000

110 TIMES ON

The interrupt service routine starting at line 1000 will be called at 2:30:10. The
time at which the interrupt occurs is specified as a character string containing
hours, minutes, and seconds.

The ON TIMER GOSUB statement defines an interrupt service routine to be ex-
ecuted repeatedly at a certain interval. For example:

100 ON TIMER 3600 GOSUB 1000

110 TIMER ON

The interrupt service routine starting at line 1000 will be executed once every six
minutes until TIMER STOP or TIMER OFF is executed. The time interval is spe-
cified in units of 0.1 second, in the range 1 to 864000 (0.1 second to 24 hours).

The ON ALARM GOSUB statement defines an interrupt service routine to be ex-
ecuted once after the specified time has elapsed. For example:

100 ON ALARM 10 GOSUB 1000

110 ALARM ON

The interrupt service routine starting at line 1000 will be called 1 second later.
The time is specified in units of 0.1 second.

The ON KEY GOSUB statement defines an interrupt routine to be executed
when a certain numeric keypad key is pressed. For example:

100 ON KEY (1) GOSUB 1000

110 KEY (1) ON

When numeric key 1 is pressed, the interrupt service routine starting at line 1000
will be executed.

Interrupts

Section 6-1

The key pressed is read during the interrupt processing and does not remain in
the input buffer.

Communications Port Interrupts

Network Interrupts

Signal Interrupts

PC Interrupts

The ON COM GOSUB statement defines an interrupt routine to be executed
when a character is received by a communications port. For example:

100 ON COM(2) GOSUB 1000

110 COM(2) ON

When a character is received by communications port 2, the interrupt service
routine starting at line 1000 will be executed. If the port number is omitted, port 1
is assumed.

Interrupts for communications ports are enabled and disabled using coM ON
and COM OFF. COM STOP will operate the same as COM OFF.

This table shows the correspondence between port numbers and port types.

Port no. Port type
1 RS-232C
2 RS-232C
3 RS-422

The ON FINS GOSUB statement defines an interrupt routine to be executed
when data is received from another BASIC Unit on the PC or connected with a
network, or an FA computer. For example:

100 ON FINS GOSUB 1000

110 FINS ON

The interrupt service routine starting at line 1000 will be called when network
data is received. (For information about establishing communication between
BASIC Units, see 7-1 Peripheral Device Operation.)

Interrupts from networks are enabled and disabled using FINS ON and FINS
OFF. FINS STOP will operate the same as FINS OFF.

The ON SIGNAL GOSUB statement defines an interrupt routine to be executed
when a specified signal is received from another task. For example:

100 ON SIGNAL 5 GOSUB 1000

110 SIGNAL 5 ON

When signal 5 is received from another task, the interrupt routine starting at line
1000 will be executed. (For more information about signals, see 6-2-5 Inter-task
Communication.)

The ON PC GOSUB statement defines an interrupt routine to be executed when
an interrupt from a PC is received. For example:

100 ON PC(2) GOSUB 1000

110 PC(2) ON

When interrupt 2 is received from a PC (the user program in the CPU Unit ex-
ecutes a SEND(192) or RECV(193) instruction), the interrupt routine starting at
line 1000 will be executed. (For more information about PC communications,
see 6-4 PC Communications.)

Interrupts from the CPU Unit are enabled and disabled using PC ON and PC
OFF. PC STOP will operate the same as PC OFF.

95

Interrupts

Section 6-1

Error Processing

Note

Error processing is slightly different than other interrupt processing. If the BASIC
Unit encounters an error (for example, if the program attempts to divide by zero),
execution is normally terminated and an error message is printed. If an er-
ror-handling “interrupt” routine is defined with the ON ERROR GOTO statement,
the BASIC Unit will instead execute that routine. The routine can take whatever
action is necessary to correct the error and continue.

The ON ERROR GOTO statement defines an interrupt routine to be executed if
the BASIC Unit encounters an error. For example:

100 ON ERROR GOTO 1000

If the BASIC Unit encounters an error, the interrupt routine starti