
Structured Programming Manual

Mitsubishi
Programmable Controller

QCPU

(Fundamentals)

SAFETY PRECAUTIONS

(Always read these instructions before using this product.)

Before using the MELSEC-Q series programmable controller, thoroughly read the manuals attached to the

products and the relevant manuals introduced in the attached manuals. Also pay careful attention to safety and

handle the products properly.

Please keep this manual in a place where it is accessible when required and always forward it to the end user.
A-1

REVISIONS

The manual number is written at the bottom left of the back cover.

Japanese manual version SH-080735-B

© 2008 MITSUBISHI ELECTRIC CORPORATION

Print date Manual number Revision

Jul., 2008 SH(NA)-080782ENG-A First edition

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.

Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may

occur as a result of using the contents noted in this manual.
A-2

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q series programmable controller.
Before using the product, thoroughly read this manual to develop full familiarity with the programming
specifications to ensure correct use.
Please forward this manual to the end user.

CONTENTS

SAFETY PRECAUTIONS ...A - 1

REVISIONS...A - 2

INTRODUCTION...A - 3

CONTENTS ..A - 3

MANUALS...A - 5

PURPOSE OF THIS MANUAL ...A - 6

GENERIC TERMS AND ABBREVIATIONS IN THIS MANUAL..A - 8

1. OVERVIEW 1 - 1 to 1 - 4
1.1 Overview 1 - 2

1.2 Features of Structured Programs 1 - 2

1.3 Applicable CPU Modules 1 - 3

1.4 Compatible Software Package 1 - 3

2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS 2 - 1 to 2 - 4
2.1 What is a Hierarchical Sequence Program? 2 - 2

2.2 What is a Structured Sequence Program? 2 - 3

3. PROCEDURE FOR CREATING PROGRAMS 3 - 1 to 3 - 2
3.1 Procedure for Creating Sequence Programs in Structured Project 3 - 2

4. PROGRAM CONFIGURATION 4 - 1 to 4 - 28
4.1 Overview of Program Configuration 4 - 2

4.1.1 Project ... 4 - 3
4.1.2 Program files.. 4 - 3
4.1.3 Tasks ... 4 - 4

4.2 POUs 4 - 5
4.2.1 Types of POU .. 4 - 5
4.2.2 Program blocks.. 4 - 6
4.2.3 Functions ... 4 - 6
4.2.4 Function blocks.. 4 - 7
4.2.5 Networks.. 4 - 8
4.2.6 Programming languages for POUs ... 4 - 9
4.2.7 Functions and function blocks ... 4 - 10
4.2.8 EN and ENO.. 4 - 13

4.3 Labels 4 - 14
4.3.1 Global labels .. 4 - 14
A-3

4.3.2 Local labels.. 4 - 14

4.3.3 Label classes ... 4 - 15

4.3.4 Data types.. 4 - 16

4.4 Device and Address 4 - 18

4.4.1 Device.. 4 - 18

4.4.2 Address.. 4 - 19

4.4.3 Correspondence between devices and addresses.. 4 - 20

4.5 Arrays 4 - 23

4.6 Structures 4 - 25

4.7 Libraries 4 - 26

4.7.1 User libraries.. 4 - 27

5. WRITING PROGRAMS 5 - 1 to 5 - 14

5.1 ST Language 5 - 2

5.1.1 Standard format ... 5 - 2

5.1.2 Operators in the ST language.. 5 - 3

5.1.3 Syntaxes in the ST language... 5 - 4

5.1.4 Calling functions in the ST language ... 5 - 9

5.1.5 Calling function blocks in the ST language.. 5 - 10

5.2 Structured Ladder Language 5 - 11

5.2.1 Standard format ... 5 - 11

5.2.2 Network elements in the structured ladder language .. 5 - 12

APPENDIX App - 1 to App - 8

Appendix 1Character Strings that cannot be Used in Label Names and Data Names App - 2

Appendix 2Recreating Ladder Programs App - 4

Appendix 2.1Procedure for creating a structured program ...App - 4

Appendix 2.2Example of creating a structured program...App - 5

INDEX index - 1 to index - 2
A-4

MANUALS

The manuals related to this product are shown below.

Refer to the following tables when ordering required manuals.

(1) Structured programming

(2) Operation of GX Works2

The operating manual is included in the CD-ROM with the software package. Manuals in printed

form are sold separately. Order a manual by quoting the manual number (model code) listed in

the table above.

Manual name
Manual number

(Model code)

QCPU Structured Programming Manual (Common Instructions)

Explains the specifications and functions of sequence instructions, basic instructions, and application

instructions that can be used in structured programs.

(Sold separately)

SH-080783ENG

(13JW07)

QCPU Structured Programming Manual (Application Functions)

Explains the specifications and functions of application functions that can be used in structured

programs.

(Sold separately)

SH-080784ENG

(13JW08)

QCPU Structured Programming Manual (Special Instructions)

Explains the specifications and functions of instructions for network modules, intelligent function modules, and

PID control functions that can be used in structured programs.

(Sold separately)

SH-080785ENG

(13JW09)

Manual name
Manual number

(Model code)

GX Works2 Version1 Operating Manual (Common)

Explains the system configuration of GX Works2 and the functions common to a Simple project and

Structured project such as parameter setting, operation method for the online function.

(Sold separately)

SH-080779ENG

(13JU63)

GX Works2 Version1 Operating Manual (Structured Project)

Explains operation methods such as creating and monitoring programs in Structured project of GX

Works2. (Sold separately)

SH-080781ENG

(13JU65)

GX Works2 Beginner’s Manual (Structured Project)

Explains fundamental operation methods such as creating, editing, and monitoring programs in

Structured project for users inexperienced with GX Works2.

 (Sold separately)

SH-080788ENG

(13JZ23)

Related manuals
A-5

PURPOSE OF THIS MANUAL

This manual explains programming methods, programming languages, and other information

necessary for creating structured programs.

Manuals for reference are listed in the following table according to their purpose.

For information such as the contents and number of each manual, refer to the list of 'Related

manuals'.

(1) Operation of GX Works2

Purpose

GX Works2

Installation

Instructions

GX Works2

Beginner's Manual

GX Works2 Version1

Operating Manual

-
Simple

Project

Structured

Project
Common

Simple

Project

Structured

Project

Installation

Learning the operating

environment and

installation method

Operation of Simple

project

Learning the basic

operations and

operating procedures

Learning the functions

and operation methods

for programming

Learning all functions

and operation methods

except for

programming

Operation of

Structured project

Learning the basic

operations and

operating procedures

Learning the functions

and operation methods

for programming

Learning all functions

and operation methods

except for

programming

Details

Details
Outline Outline

Outline
Details

Details

Details
Outline Outline

Outline
Details Details

Details
A-6

(2) Programming

Purpose

QCPU Structured Programming Manual
QCPU(Q mode)/QnACPU

Programming Manual

 User's Manual for
intelligent

function module/
Reference Manual

for network

module

Fundamentals
Common

Instructions
Special

Instructions
Application
Functions

Common

Instructions

PID Control

Instructions
−

Programming

in Simple

project

Learning the types
and details of
common
instructions,
descriptions of
error codes,
special relays, and
special registers

Learning the types
and details of
instructions for
intelligent function
modules

Learning the types
and details of
instructions for
network modules

Learning the types
and details of
instructions for the
PID control
function

Programming

in Structured

project

Learning the
fundamentals for
creating a
structured
program for the
first time

Learning the types
and details of the
common
instructions

Learning the types
and details of
instructions for
intelligent function
modules

Learning the types
and details of
instructions for
network modules

Learning the types
and details of
instructions for the
PID control
function

Learning the
descriptions of
error codes,
special relays, and
special registers

Learning the types
and details of
application
functions

Details

Details

Details

Details

Details

Details

Details Details

Details Details

Details Details

Details

Details
A-7

GENERIC TERMS AND ABBREVIATIONS IN THIS MANUAL
This manual uses the generic terms and abbreviations listed in the following table to discuss the
software packages and programmable controller CPUs. Corresponding module models are also
listed if needed.

Generic term and
abbreviation

Description

GX works2
Generic product name for the SWnDNC-GXW2-E
(n: version)

GX Developer
Generic product name for the SWnD5C-GPPW-E, SWnD5C-GPPW-EA, SWnD5C-GPPW-EV, and
SWnD5C-GPPW-EVA
(n: version)

GX IEC Developer
Generic product name for the SWnD5C-MEDOC3-E
(n: version)

CPU module Generic term for the High Performance model QCPU and Universal model QCPU

High Performance model
QCPU

Generic term for the Q02, Q02H, Q06H, Q12H, and Q25H

Universal model QCPU
Generic term for the Q02U, Q03UD, Q03UDE, Q04UDH, Q04UDEH, Q06UDH, Q06UDEH, Q13UDH,
Q13UDEH, Q26UDH, and Q26UDEH

Personal Computer Generic term for personal computer on which Windows ® operates

IEC61131-3 Abbreviation for the IEC 61131-3 international standard

Common instruction Generic term for the sequence instructions, basic instructions, and application instructions

Special instruction Generic term for the PID control instructions and module dedicated instructions
A-8

1

O
V
E
R
V
IE
W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D

E
X

1 OVERVIEW

1.1 Overview. 1-2

1.2 Features of Structured Programs . 1-2

1.3 Applicable CPU Modules . 1-3

1.4 Compatible Software Package . 1-3
1-1

1.1 Overview

This manual describes program configurations and contents for creating sequence programs

using a structured programming method, and provides basic knowledge for writing programs.

1.2 Features of Structured Programs

This section explains the features of structured programs.

(1) Structured design

A structured design is a method to program control contents performed by a programmable

controller CPU, which are divided into small processing units (components) to create

hierarchical structures. A user can design programs knowing the component structures of

sequence programs by using the structured programming.

The followings are the advantages of creating hierarchical programs.

 • A user can start programming by planning the outline of a program, then gradually work

into detailed designs.

 • Programs stated at the lowest level of a hierarchical design are extremely simple and

each program has a high degree of independence.

The followings are the advantages of creating structured programs.

 • The process of each component is clarified, allowing a good perspective of the program.

 • Programs can be divided and created by multiple programmers.

 • Program reusability is increased, and it improves the efficiency in development.

(2) Multiple programming languages

Multiple programming languages are available for structured programs. A user can select

the most appropriate programming language for each purpose, and combine them for

creating programs.

 • Different programming language can be used for each program component.

Table 1.2-1 Programming languages that can be used for structured programs

For outlines of the programming languages, refer to the following section.

 Section 4.2.6. Programming languages for POUs

For details on each programming language, refer to the following chapter.

 Chapter 5. WRITING PROGRAMS

The ladder languages used in the existing GX Developer and Simple project can be used.

For details on writing programs, refer to the following manuals.

 Programming manuals for each CPU

(3) Improved program reusability

Program components can be stored as libraries. This means program assets can be utilized

to improve the reusability of programs.

Name Description

ST (structured text) A text language similar to C language, aimed for computer engineers.

Structured ladder A graphic language that is expressed in form of ladder by using elements such as contacts and coils.
1-2 1.1 Overview

1

O
V
E
R
V
IE
W

1.3 Applicable CPU Modules

The following table shows the applicable CPU modules for programs in the Structured project.

Table 1.3-1 Applicable CPU modules

1.4 Compatible Software Package

The following programming tool is used for creating, editing, and monitoring the programs in the

Structured project.

Table 1.4-1 Compatible software package

(1) What is GX Works2?

GX Works2 is a software package used for editing and debugging sequence programs,

monitoring programmable controller CPUs, and other operations. It runs on a personal

computer in the Microsoft® Windows® Operating System environment.

Created sequence programs are managed in units of 'projects' for each programmable

controller CPU. Projects are broadly divided into 'Simple project' and 'Structured project'.

This manual explains the basic programming by referring the Structured project in

GX Works2.

Programmable controller CPU type

High Performance model QCPU Q02, Q02H, Q06H, Q12H, Q25H

Universal model QCPU
Q02U, Q03UD, Q03UDE, Q04UDH, Q04UDEH, Q06UDH,

Q06UDEH, Q13UDH, Q13UDEH, Q26UDH, Q26UDEH

Software package name Model name

GX Works2 SW1DNC-GXW2-E
1.3 Applicable CPU Modules
1-3

MEMO
1-4

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D

E
X

2 STRUCTURED DESIGN OF SEQUENCE PROGRAMS

2.1 What is a Hierarchical Sequence Program?. 2-2

2.2 What is a Structured Sequence Program? . 2-3
2-1

2.1 What is a Hierarchical Sequence Program?

The hierarchy is to create a sequence program by dividing control functions performed in a

programmable controller CPU into a number of levels.

In higher levels, the processing order and timing in a fixed range is controlled.

With each move from a higher level to a lower level, control contents and processes are

progressively subdivided within a fixed range, and specific processes are described in lower

levels.

In the Structured project, hierarchical sequence programs are created with the configuration that

states the highest level as the project, followed by program files, tasks, and POUs (abbreviation

for Program Organization Units).

Project

POUsTask (Initialization)

Initial process

Lamp test

Program file (Operation preparation)

Task (Station A control)

Conveyor drive A

Data process A

Program file (Station A)

Task (Station B control)

Task (Indicator control)

Conveyor drive B

Data process B

Indicator output

Program file (Station B)

Initial process

Lamp test

Conveyor drive A

Conveyor drive B

Data process A

Data process B

Indicator output
2-2 2.1 What is a Hierarchical Sequence Program?

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

2.2 What is a Structured Sequence Program?

A structured program is a program created by components. Processes in lower levels of

hierarchical sequence program are divided to several components according to their processing

informations and functions.

In a structured program design, segmenting processes in lower levels as much as possible is

recommended.

Each component is designed to have a high degree of independence for easy addition and

replacement.

The following shows examples of the process that would be ideal to be structured.

• A process that is used repeatedly in a sequence program.

• A process that can be divided into components.

A process that is used repeatedly in a sequence program

Control contents in

a programmable controller CPU
Control contents in

a programmable controller CPU

Calls process-A

Calls process-A

Calls process-A

DIV

MUL

DIV

MUL

DIV

DIV

MUL

MUL Process-A

Structured

program

Divided

Divided

Control 1

Control a

Structured

programControl b

Control c

Control d

Control 2

A process that can be devided into components

Control

contents

in a

programmable

controller

CPU

Divided
2.2 What is a Structured Sequence Program?
2-3

MEMO
2-4

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D

E
X

3 PROCEDURE FOR CREATING PROGRAMS

3.1 Procedure for Creating Sequence Programs in Structured Project 3-2
3-1

3.1 Procedure for Creating Sequence Programs in

Structured Project

This section explains the basic procedure for creating a sequence program in the Structured

project.

(1) Creating a program structure

(2) Creating POUs

(3) Editing the programs

(4) Compiling the programs

Procedure

Create program files.

Create tasks.

Procedure

Create POUs.

Define global labels.

Define local labels.

Procedure

Edit the programs of each POU.

Procedure

Register the POUs in the tasks.

Compile the programs.

Create components
Assemble the
components

Combine as one
program

Program file POU Program file

Task 1
Function

block 1
Program

block 1

Program

block 2

Program

block 3

Program

block 4

Program

block 1

Program

block 2

Sequence

program

Program

block 3

Program

block 4

Function 1

Function 2

Function

block 2

Task 2

Task 1

Task 2

Create program
configuration
3-2 3.1 Procedure for Creating Sequence Programs in Structured Project

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D

E
X

4 PROGRAM CONFIGURATION

4.1 Overview of Program Configuration . 4-2

4.2 POUs . 4-5

4.3 Labels . 4-14

4.4 Device and Address . 4-18

4.5 Arrays . 4-23

4.6 Structures . 4-25

4.7 Libraries . 4-26
4-1

4.1 Overview of Program Configuration

A sequence program created in the Structured project is composed of program files, tasks, and

POUs.

For details of program components, refer to the following sections.

For projects: Section 4.1.1 Project

For program files: Section 4.1.2 Program files

For tasks: Section 4.1.3 Tasks

For POUs: Section 4.2 POUs

The following figure shows the configuration of program files, tasks, and POUs in the project.

Project

Program file 2

Task

Program file 1

Task

Task

Program file n

Task

Task

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block

POU

Program block
4-2 4.1 Overview of Program Configuration

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.1.1 Project

A project is a generic term for data (such as programs and parameters) to be executed in a

programmable controller CPU.

One or more program files need to be created in a project.

4.1.2 Program files

One or more tasks need to be created in a program file. (Created tasks are executed under the

control of the program file.)

The execution types (such as scan execution and fixed scan execution) for executing program

files in a programmable controller CPU are set in the program setting of the parameter.

For details on the execution types set in the parameter, refer to the user's manual of each CPU

module.

Program file 1 Program file 2 Program file n

Task

Task Task

Task Task

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

POU
Program block

Project
4.1 Overview of Program Configuration

4.1.1 Project
4-3

4.1.3 Tasks

A task is an element that contains multiple POUs, and it is registered to a program file.

One or more program blocks of POU need to be registered in a task. (Functions and function

blocks cannot be registered in a task.)

(1) Task executing condition

The executing conditions in a programmable controller CPU are set for each task that is

registered to program files. Executing processes are determined for each task by setting the

executing condition.

The followings are the types of task executing condition.

(a) Scan execution (Default executing condition)

Executes registered program blocks for each scan.

(b) Event execution

Executes tasks when values are set to the corresponding devices or labels.

(c) Fixed scan execution

Executes tasks in a specified cycle.

A priority can be set for each task execution.

● Priority

When executing conditions of multiple tasks are met simultaneously, the tasks are

executed according to the set priority.

Tasks are executed in the order from the smallest priority level number.

Tasks set with a same priority level number are executed in the order of task data name.

Project

POU
Program block

POU
Program block

POU
Program block

Task Task

Program file 1 Program file 2

POU
Program block

POU
Program block

Task

POU
Program block

POU
Program block

Task

Program file n

POU
Program block

POU
Program block

POU
Program block

Task
4-4 4.1 Overview of Program Configuration

4.1.3 Tasks

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2 POUs

A POU (abbreviation for Program Organization Unit) is a program component defined by each

function.

4.2.1 Types of POU

The following three types can be selected for each POU according to the contents to be defined.

• Program block

• Function

• Function block

Each POU consists of local labels*1 and a program.

A process can be described in a programming language that suits the control function for each

POU.

*1 Local labels are labels that can be used only in programs of declared POUs. For details

of local labels, refer to the following section.

 Section 4.3.2 Local labels

Project

Task

POU

POU

POU

POU

Program block

Program block

Function

Function block

POU folder

Registration

Program file
4.2 POUs

4.2.1 Types of POU
4-5

4.2.2 Program blocks

A program block is an element that is stated at the highest level of POU. Libraries, functions, and

function blocks are used to edit program blocks.

Sequence programs executed in a programmable controller CPU are created by program blocks

of POU.

For a simplest sequence program, only one program block needs to be created and registered to

a task in order to be executed in a programmable controller CPU.

Program blocks can be described in the ST or structured ladder language.

4.2.3 Functions

Libraries and functions are used to edit functions.

Functions can be used by calling them from program blocks, function blocks or functions.

Functions always output same processing results for same input values.

By defining simple and independent algorithms that are frequently used, functions can be reused

efficiently.

Functions can be described in the ST or structured ladder language.

Program block Library

Function

Function block

Library

Function

Function
4-6 4.2 POUs

4.2.2 Program blocks

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.4 Function blocks

Libraries, functions, and other function blocks are used to edit function blocks.

Function blocks can be used by calling them from program blocks or function blocks. Note that

they cannot be called from functions.

Function blocks can retain the input status since they can store values in internal and output

variables. Since they use retained values for the next processing, they do not always output the

same results even with the same input values.

Function blocks can be described in the ST or structured ladder language.

● Instantiation

Function blocks need to be instantiated to be used in program blocks.

For details of instantiation, refer to the following section.

 Section 4.2.7 Functions and function blocks

Instances are variables representing devices assigned to labels of function

blocks.

Devices are automatically assigned when instances are created with local labels.

Library

Function

Function block

Function block
4.2 POUs

4.2.4 Function blocks
4-7

4.2.5 Networks

In the structured ladder language, a program is divided into units of networks.

In the ST language, networks are not used.

● Network labels

A network label can be set to a network. A network label is used to indicate a jump target for

the Jump instruction.

Network label NetworkJump instruction
4-8 4.2 POUs

4.2.5 Networks

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.6 Programming languages for POUs

Two types of programming language are available for programs of POU.

The following explains the features of each programming language.

(1) ST: Structured text

Control syntaxes such as branch selections by conditional syntaxes or repetitions by

iterative syntaxes can be described in the ST language, as in the high-level language such

as C language. Clear and simple programs can be written by using these syntaxes.

(2) Structured ladder: (ladder diagram)

The structured ladder language is a graphic language developed based on the relay ladder

programming technique. Since it can be understood intuitively, it is commonly used for the

sequence programming.

Ladders always start from the base line on the left.

A program written in the structured ladder language is composed of contacts, coils, function

blocks, and functions. These elements are connected by vertical and horizontal lines.
4.2 POUs

4.2.6 Programming languages for POUs
4-9

4.2.7 Functions and function blocks

The following table shows differences between functions and function blocks.

Table 4.21 Differences between functions and function blocks

(1) Output variable assignment

A function always outputs a single operation result. A function that does not output any

operation result or outputs multiple operation results cannot be created.

A function block can output multiple operation results. It also can be created without any

output.

Item Function Function block

Output variable assignment Can not be assigned Can be assigned

Internal variable Not used Used

Creating instances Not necessary Necessary

Function Function block

Outputs one
operation result

Outputs multiple

operation results

Without any

output
4-10 4.2 POUs

4.2.7 Functions and function blocks

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(2) Internal variables

A function does not use internal variables. It uses devices assigned directly to each input

variable and repeats operations.

(a) A program that outputs the total of three input variables (When using a function (FUN1))

A function block uses internal variables. Different devices are assigned to the internal

variables for each instance of function blocks.

(b) Programs that output the total of three input variables (When using function blocks)

D120

X0

D109

D110

D111

D109

D110

FUN1

D111

Function

D13 D13

Instance A

Function block Function block

Instance B

D10

D11

D12

D6200

D6201

D6203

D6202

D10

D11

D12

D6210

D6211

D6213

D6212
4.2 POUs

4.2.7 Functions and function blocks
4-11

(3) Creating instances

When using function blocks, create instances to reserve internal variables.

Variables can be called from program blocks and other function blocks by creating instances

for function blocks.

To create an instance, declare as a label in a global label or local label of POU that uses

function blocks. Same function blocks can be instantiated with different names in a single

POU.

Function blocks perform operations using internal variables assigned to each instance.

D13

D13 D13

Uses same internal variables

for same instances

Uses different internal variables

for different instances

Function block

Instance A

Function block Function block

Instance A Instance B

D10

D11

D12

D6200

D6201

D6203

D6204D6202

D10

D11

D12

D6200

D6201

D6203

D6204D6202

D10

D11

D12

Input label1

Input label1

Input label1

Input label1

Input label2

Input label3

Input label1

Input label2

Input label3 Local label

Output label

Output label

Local label

Output label

D6210

D6211

D6213

Local label

D6214D6212
4-12 4.2 POUs

4.2.7 Functions and function blocks

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.2.8 EN and ENO

An EN (enable input) and ENO (enable output) can be appended to a function and function

block.

A Boolean variable used as an executing condition of a function is set to an EN.

A function with an EN is executed only when the executing condition of the EN is TRUE.

A Boolean variable used as an output of function executing status is set to an ENO.

An ENO outputs TRUE when the execution of the function is normally completed. It outputs

FALSE when the process of the function is abnormally ended.

● Example of a function with EN

In the example above, the ABS_E function is executed only when the Boolean type

label 'Function_Enable' is TRUE.

If the function is executed normally, the Boolean type label 'Enable_Out' outputs TRUE.

A setting of an output label to an ENO is not essential.

Function_Enable Enable_Out

Enable input Enable output
4.2 POUs

4.2.8 EN and ENO
4-13

4.3 Labels

Labels include global labels and local labels.

4.3.1 Global labels

The global labels are labels that can be used in program blocks and function blocks.

In the setting of a global label, a label name, a class, a data type, and a device are associated

with each other.

4.3.2 Local labels

The local labels are labels that can be used only in declared POUs. They are individually defined

per POU.

In the setting of a local label, a label name, a class, and a data type are set.

For the local labels, the user does not need to specify devices. Devices are assigned

automatically at compilation.
4-14 4.3 Labels

4.3.1 Global labels

4

PR
O

G
R

A
M

C

O
N

FI
G

U
R

AT
IO

N

4.3.3 Label classes
The label class indicates from which POU and how a label can be used. Different classes can be
selected according to the type of POU.

The following table shows label classes.

Table 4.3.3-1 Label classes

 • Input variables, output variables, and input/output variables
VAR_INPUT is an input variable for functions and function blocks, and
VAR_OUTPUT is an output variable for function blocks.
VAR_IN_OUT can be used for both input and output variables.

Class Description
Applicable POU

Program
block

Function
Function

block

VAR_GLOBAL
Common label that can be used in program blocks and
function blocks

VAR_GLOBAL_CONS
TANT

Common constant that can be used in program blocks and
function blocks

VAR
Label that can be used within the range of declared POUs
This label cannot be used in other POUs.

VAR_CONSTANT
Constant that can be used within the range of declared POUs
This constant cannot be used in other POUs.

VAR_RETAIN
Latch type label that can be used within the range of declared
POUs
This label cannot be used in other POUs.

VAR_INPUT
Label that receives a value
This label cannot be changed in a POU.

VAR_OUTPUT Label that outputs a value from a function block

VAR_IN_OUT
Local label that receives a value and outputs the value from a
POU
This label can be changed in a POU.

VAR_INPUT VAR_OUTPUT

VAR_IN_OUT
4.3 Labels
4.3.3 Label classes 4-15

4.3.4 Data types
Labels are classified into several data types according to the bit length, processing method, or
value range.

(1) Elementary data types
The following data types are available as the elementary data type.*1

 • Boolean type (bit): Represents the alternative status, such as ON or OFF.

 • Bit string type (word (unsigned)/16-bit string, double word (unsigned)/32-bit string):
Represents bit arrays.

 • Integer type (word (signed), double word (signed)): Handles positive and negative integer
values.

 • Real type (single-precision real, double-precision real): Handles floating-point values.

 • String type (character string): Handles character strings.

 • Time type (time): Handles numeric values as day, hour, minute, and second (in
millisecond).

Table 4.3.4-1 Elementary data types

*1: The following data types cannot be used for the structured ladder and ST languages.
They can be only used for the ladder language.

• Timer data type: Handles programmable controller CPU timer devices (T).
• Retentive timer data type: Handles programmable controller CPU retentive timer devices (ST).
• Counter data type: Handles programmable controller CPU counter devices (C).
• Pointer data type: Handles programmable controller CPU pointer devices (P).

*2 Can be used for the Universal model QCPU only.
*3 The time type is used in time type operation instructions of application function.

 For details of the application functions, refer to the following manual.

 QCPU Structured Programming Manual (Application Functions)

The following shows the expressing method for setting a constant to a label.

Table 4.3.4-2 Constant expressing method

Elementary data type Description Value range Bit length
Bit Bool 0 (FALSE), 1 (TRUE) 1 bit

Word (signed) Integer -32768 to 32767 16 bits

Double word
(signed)

Double-precision integer -2147483648 to 2147483647 32 bits

Word (unsigned)/16-bit string 16-bit string 0 to 65535 16 bits

Double word (unsigned)/32-bit
string

32-bit string 0 to 4294967295 32 bits

Single-precision real Real -2128 to -2-126, 0, 2-126 to 2128 32 bits

Double-precision real*2 Double-precision real -21024 to -2-1022, 0, 2-1022 to 21024 64 bits

String Character string Maximum 255 characters Variable

Time*3 Time value
T#-24d-0h31m23s648ms to
T#24d20h31m23s647ms

32 bits

Constant type Expressing method Example
Bool Input FALSE or TRUE, or input 0 or 1. TRUE, FALSE

Binary Append '2#' in front of a binary number. 2#0010, 2#01101010

Octal Append '8#' in front of an octal number. 8#0, 8#337

Decimal Directly input a decimal number, or append 'K' in front of a decimal number. 123, K123

Hexadecimal
Append '16#' or 'H' in front of a hexadecimal number.
When a lowercase letter 'h' is appended, it is converted to uppercase automatically.

16#FF, HFF

Real number Directly input a real number or append 'E' in front of a real number. 2.34, E2.34

Character string Enclose a character string with single quotations (') or double quotations ("). 'ABC', "ABC"
4-16 4.3 Labels
4.3.4 Data types

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

(2) Generic data types

Generic data type is the data type of labels summarizing some elementary data types. Data

type name starts with 'ANY'.

ANY data types are used when multiple data types are allowed for function arguments and

return values.

Labels defined in generic data types can be used in any sub-level data type.

For example, if the argument of a function is ANY_NUM data type, desired data type for an

argument can be specified from word (signed) type, double word (signed) type, single-

precision real type, and double-precision real type.

Arguments of functions and instructions are described using generic data types, in order to

be used for various different data types.

The following figure shows the types of generic data type and their corresponding

elementary data types.

*1 For arrays, refer to the following section. Section 4.5 Arrays

*2 For structures, refer to the following section. Section 4.6 Structures

The higher 'ANY' data types include sub-level data types.

The highest 'ANY' data type includes all data types.

Word
(unsigned)/
16-bit string

Word
(signed)

ANY_REAL ANY_INT

Single-

precision

real

Double-

precision

real

ANY_NUM

ANY16 ANY32

Word
(signed)

Double
word

(signed)

ANY_BIT

ANY_SIMPLE

ANY

Time String

Array*1 Structure*2

Bit

Word
(unsigned)/
16-bit string

Double word
(unsigned)/
32-bit string

Double word
(unsigned)/
32-bit string

Double
word

(signed)
4.3 Labels

4.3.4 Data types
4-17

4.4 Device and Address

This section explains the method for expressing programmable controller CPU devices. The

following two types of format are available.

• Device: This format consists of a device name and a device number.

• Address: A format defined in IEC61131-3. In this format, a device name starts with %.

4.4.1 Device

Device is a format that uses a device name and a device number.

For details of devices used in the QCPU, refer to the following

manual.

 QCPU User's Manual (Function Explanation, Program

Fundamentals)

Example)

X0 W35F

Device name Device number
4-18 4.4 Device and Address

4.4.1 Device

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.4.2 Address

Address is a format defined in IEC61131-3.

The following table shows details of format that conforms to IEC61131-3.

Table 4.4.2-1 Address definition specifications

● Position

Position is a major class indicating the position to

which data are allocated in three types: input,

output, and internal.

The following shows the format rules

corresponding to the device format.

 • X, J\X (X device) : I (input)

 • Y, J\Y (Y device) : Q (output)

 • Other devices : M (internal)

● Data size

Data size is a class indicating the size of data.

The following shows the format rules corresponding to the device format.

 • Bit device : X (bit)

 • Word device : W (word), D (double word), L (long word)

● Classification

Classification is a minor class indicating the type of a device that cannot be identified

only by its position and size.

Devices X and Y do not support classification.

For the format corresponding to the device format, refer to the following section.

 Section 4.4.3 Correspondence between devices and addresses

Long words are used in double-precision real operation instructions of the

Universal model QCPU.

Start
1st character:

position
2nd character: data size

3rd character and later:

classification
Number

%

I Input (Omitted) Bit Numerics used for detailed

classification

Use '.' (period) to delimit the

numbers from the subsequent

numbers.

A period may be omitted.

Number

corresponding to

the device

number (decimal

notation)

Q Output X Bit

M Internal

W Word (16 bits)

D Double word (32 bits)

L Long word (64 bits)

Example)

X0%I %MX1 . 863

Position Data

size

Classification Number
4.4 Device and Address

4.4.2 Address
4-19

4.4.3 Correspondence between devices and addresses

This section explains the correspondence between devices and addresses.

(1) Correspondence between devices and addresses

The following table shows the correspondence between devices and addresses.

Table 4.4.3-1 Correspondence between devices and addresses

Device
Expressing method

Example of correspondence between

device and address

Device Address Device Address

Input X Xn %IXn X7FF %IX2047

Output Y Yn %QXn Y7FF %QX2047

Internal relay M Mn %MX0.n M2047 %MX0.2047

Latch relay L Ln %MX8.n L2047 %MX8.2047

Annunciator F Fn %MX7.n F1023 %MX7.1023

Special relay SM SMn %MX10.n SM1023 %MX10.1023

Function input FX FXn None FX10 None

Function output FY FYn None FY10 None

Edge relay V Vn %MX9.n V1023 %MX9.1023

Direct access input DX DXn %IX1.n DX7FF %IX1.2047

Direct access output DY DYn %QX1.n DY7FF %QX1.2047

T
im

e
r

Contact TS Tn %MX3.n TS511 %MX3.511

Coil TC Tn %MX5.n TC511 %MX5.511

Current value TN Tn
%MW3.n

%MD3.n

TN511

T511

%MW3.511

%MD3.511

C
o

u
n

te
r

Contact CS Cn %MX4.n CS511 %MX4.511

Coil CC Cn %MX6.n CC511 %MX6.511

Current value CN Cn
%MW4.n

%MD4.n

CN511

C511

%MW4.511

%MD4.511

R
e

te
n

ti
v
e

 t
im

e
r Contact STS STn %MX13.n STS511 %MX13.511

Coil STC STn %MX15.n STC511 %MX15.511

Current value STN STn
%MW13.n

%MD13.n

STN511

ST511

%MW13.511

%MD13.511

Data register D Dn
%MW0.n

%MD0.n
D11135

%MW0.11135

%MD0.11135

Special register SD SDn
%MW10.n

%MD10.n
SD1023

%MW10.1023

%MD10.1023

Function register FD FDn None FD0 None

Link relay B Bn %MX1.n B7FF %MX1.2047

Link special relay SB SBn %MX11.n SB3FF %MX11.1023

Link register W Wn
%MW1.n

%MD1.n
W7FF

%MW1.2047

%MD1.2047

Link special register SW SWn
%MW11.n

%MD11.n
SW3FF

%MW11.1023

%MD11.1023

Intelligent function

module device
G Ux\Gn

%MW14.x.n

%MD14.x.n
U0\G65535

%MW14.0.65535

%MD14.0.65535

File register R Rn
%MW2.n

%MD2.n
R32767

%MW2.32767

%MD2.32767

Pointer P Pn "" (Null character) P299 None

Interrupt pointer I In None - -

Nesting N Nn None - -

Index register Z Zn
%MW7.n

%MD7.n
Z9

%MW7.9

%MD7.9
4-20 4.4 Device and Address

4.4.3 Correspondence between devices and addresses

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

Table 4.4.3-2 Correspondence between devices and addresses

Device
Expressing method

Example of correspondence between

device and address

Device Address Device Address

Step relay S Sn %MX2.n S127 %MX2.127

SFC transition device TR TRn %MX18.n TR3 %MX18.3

SFC block device BL BLn %MX17.n BL3 %MX17.3

Link input

J

Jx\Xn %IX16.x.n J1\X1FFF %IX16.1.8191

Link output Jx\Yn %QX16.x.n J1\Y1FFF %QX16.1.8191

Link relay Jx\Bn %MX16.x.1.n J2\B3FFF %MX16.2.1.16383

Link register Jx\Wn
%MW16.x.1.n

%MD16.x.1.n
J2\W3FFF

%MW16.2.1.16383

%MD16.2.1.16383

Link special relay Jx\SBn %MX16.x.11.n J2\SB1FF %MX16.2.11.511

Link special register Jx\SWn
%MW16.x.11.n

%MD16.x.11.n
J2\SW1FF %MW16.2.11.511

File register ZR ZRn
%MW12.n

%MD12.n
ZR32767

%MW12.32767

%MD12.32767
4.4 Device and Address

4.4.3 Correspondence between devices and addresses
4-21

(2) Digit specification for bit devices

The following table shows the correspondence between devices and addresses when a digit

is specified for a bit device.

Table 4.4.3-3 Correspondence of formats with digit specification

 • Correspondence examples

(3) Bit specification for word devices

The following table shows the correspondence between devices and addresses when a bit

is specified for a word device.

Table 4.4.3-4 Correspondence of formats with bit specification

 • Correspondence examples

 • Index setting, digit specification, and bit specification

Index setting, digit specification, and bit specification cannot be applied to

labels.

Device Address

K[Number of digits][Device name][Device number]

(Number of digits: 1 to 8)

%[Position of memory area][Data size]19.[Number of

digits].[Classification].[Number]

(Number of digits: 1 to 8)

Device Address

K1X0 %IW19.1.0

K4M100 %MW19.4.0.100

K8M100 %MD19.8.0.100

K2Y7E0 %QW19.2.2016

Device Address

[Device name][Device number].[Bit number]

(Bit number: 0 to F)

%[Position of memory area]X[Classification].[Device

number].[Bit number]

Device Address

D11135.C %MX0.11135.12

SD1023.F %MX10.1023.15
4-22 4.4 Device and Address

4.4.3 Correspondence between devices and addresses

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.5 Arrays

An array represents a consecutive aggregation of same data type labels.

Arrays can be defined by the elementary data types or structures.

(GX Works2 Version1 Operating Manual (Structured Project))

The maximum number of arrays differs depending on the data types.

(1) Definition of arrays

The following table shows the format of definition.

Table 4.5-1 Form used to define array

(2) Expression of arrays

To identify individual labels of an array, append an index

enclosed by '[]' after the label name.

Values that can be specified for indexes are within the range

from -32768 to 32767.

For an array with two or more dimensions, delimit indexes in

'[]' by ','.

For the ST and structured ladder languages, labels (word (signed) or double word (signed)

data type) can be used for indexes as shown on the next page.

Note that Z0 or Z1 cannot be used in the programs if labels are used for indexes.

Number of

array

dimensions

Format Remarks

One

dimension

Array of elementary data type/structure name (array start value .. array end

value)

For elementary data types

 4.3.4

For structured data types

 4.6

(Definition example) Bit (0..2)

Two

dimensions

Array of elementary data type/structure name (array start value .. array end

value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1)

Three

dimensions

Array of elementary data type/structure name (array start value .. array end

value, array start value .. array end value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1, 0..3)

Label name

boolary1 [1]

[2]

[n]

boolary2 [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

One-dimensional array Two-dimensional array

Index Label name

[0,0]

Index

boolary1 [0] boolary2 [0.3]

Label name index

Example)
4.5 Arrays
4-23

[Structured ladder]

[ST]

FOR Index1:=0

 TO 4

 BY 1 DO

 INC(TRUE,Var_D0[Index1]);

END_FOR;

(3) Maximum number of array elements

The maximum number of array elements differs depending on data types as shown below.

Table 4.5-2 Maximum number of array

Data type Maximum number

Bit, word (signed), word (unsigned)/16-bit string, timer, counter, and retentive timer 32768

Double word (signed), double word (unsigned)/32-bit string, single-precision real, and time 16384

Double-precision real 8192

String 32768 divided by string length
4-24 4.5 Arrays

4

PR
O

G
R

A
M

C

O
N

FI
G

U
R

AT
IO

N

4.6 Structures

A structure is an aggregation of different data type labels.

Structures can be used in all POUs.

To use structures, first create the configuration of structure, and define a structured data type
label name for the created structure as a new data type.

(GX Works2 Version1 Operating Manual (Structured Project))

To use each element of structure, append an element name
after the structured data type label name with '.' as a delimiter
in between.

Structures can also be used as arrays. When a structure is
declared as an array, append an index enclosed by '[]' after
the structured data type label name.

dut_a1 . in00

Structured

data type

label name

Element name

Example) When using the element

of the structured data

dut_b1 [0] . in00

Index Element

name

Structured

data type

label name

Example) When using the element

of the arranged structured data

Bit bo00

Bit bo01

Word (signed) in00 dut_a1 samp_fb1

samp_fb1

Creating structures

Define labels

Structure name

Expression in a program

Structure name
Structured data
type label name

Element
4.6 Structures 4-25

4.7 Libraries

A library is an aggregation of data including POUs, global labels, and structures organized in a

single file to be utilized in multiple projects.

The followings are the advantages of using libraries.

• Data in library files can be utilized in multiple projects by installing them to each project.

• Since library data can be created according to the functions of components, data to be reused

can be easily confirmed.

• If components registered in a library are modified, the modification is applied to projects that

use the modified data.

The following figure shows the data flow when using library components in a project.

Library file

Structure

POU

Function

Function

Function block

Install Edit

Utilize

Installed library can
be registered in the
task of the project.

Library

Global labelGlobal label

Structure

Structure

POU

POU

Program blockProgram block

Program block

Function

Function block

Global label

Task

Program file

Function block

POUs can be called
from the programs
in the project.

Project
4-26 4.7 Libraries

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

4.7.1 User libraries

A user library is a library for storing created structures, global labels, POUs, and other data that

can be used in other projects.

(1) Composition of a user library

The following table shows data that can be registered in a user library.

Table 4.7.1-1 Composition of a user library

Name Description

Structure
Stores definitions of structures used in POU folders of library, or definitions of

structures used in programs of a project.

Global label Stores definitions of global labels used in POU folders of library.

POU
Stores program blocks, functions, and function blocks that can be used as

libraries.
4.7 Libraries

4.7.1 User libraries
4-27

MEMO
4-28

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D

E
X

5 WRITING PROGRAMS

5.1 ST Language . 5-2

5.2 Structured Ladder Language . 5-11
5-1

5.1 ST Language

The ST language is a text language with a similar grammatical structure to the C language.

Controls such as conditional judgement and repetition process written in syntaxes can be

described.

This language is suitable for programming complicated processes that cannot be easily

described by a graphic language (structured ladder language).

5.1.1 Standard format

Operators and syntaxes are used for programming in the ST language.

Syntaxes must end with ';'.

Spaces, tabs, and line feeds can be inserted anywhere between a keyword and an identifier.

Comments can be inserted in a program. Describe '(*' in front of a comment and '*)' in back of a

comment.

Assignment syntax

syntaxes

Comment

Calling the function

Calling the function block

Enter ';' at the end.

Space

Tab

Line feed

Comment
5-2 5.1 ST Language

5.1.1 Standard format

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.1.2 Operators in the ST language

The following table shows the operators used in the ST language and their priorities.

Table 5.1.2-1 Operators in the ST language

If a syntax includes multiple operators with a same priority, the operation is performed from the

leftmost operator.

The following table shows the operators, applicable data types, and operation result data types.

Table 5.1.2-2 Data types used in operators

Operator Description Example Priority

() Parenthesised expression (1+2)*(3+4) Highest

Lowest

Function () Function (Parameter list) ADD_E(bo01, in01, in02, in03)

** Exponentiation re01:= 2.0 ** 4.4

NOT Inverted bit value NOT bo01

*

/

MOD

Multiplication

Division

Modulus operation

3 * 4

12 / 3

13 MOD 3

+

-

Addition

Subtraction

in01 + in02

in01 - in02

<, >, <=, => Comparison in01 < in02

=

<>

Equality

Inequality

in01 = in02

in01 <> in02

AND, & Logical AND bo01 & bo02

XOR Exclusive OR bo01 XOR bo02

OR Logical OR bo01 OR bo02

Operator Applicable data type Operation result data type

*, /, +, - ANY_NUM ANY_NUM

<, >, <=, >=, =, <> ANY_SIMPLE Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

**
ANY_REAL (Base)

ANY_NUM (Exponent)
ANY_REAL
5.1 ST Language

5.1.2 Operators in the ST language
5-3

5.1.3 Syntaxes in the ST language

The following table shows the syntaxes that can be used in the ST language.

Table 5.1.3-1 Syntaxes in the ST language

(1) Assignment syntax

(b) Format

(c) Description

The assignment syntax assigns the result of the right side expression to the label or

device of the left side.

The result of the right side expression and data type of the left side need to obtain the

same data when using the assignment syntax.

(d) Example

Type of syntax Description

Assignment syntax Assignment syntax

Conditional syntax
IF THEN conditional syntax, IF ELSE conditional syntax, and IF ELSIF conditional syntax

CASE conditional syntax

Iteration syntax

FOR DO syntax

WHILE DO syntax

REPEAT UNTIL syntax

Other control syntax
RETURN syntax

EXIT syntax

<Left side> := <Right side>;
5-4 5.1 ST Language

5.1.3 Syntaxes in the ST language

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(2) IF THEN conditional syntax

(a) Format

(b) Description

The syntax is executed when the value of Boolean expression (conditional formula) is

TRUE. The syntax is not executed if the value of Boolean expression is FALSE.

Any expression that returns TRUE or FALSE as the result of the Boolean operation with

a single bit type variable status, or a complicated expression that includes many

variables can be used for the Boolean expression.

(c) Example

(3) IF ...ELSE conditional syntax

(a) Format

(b) Description

Syntax 1 is executed when the value of Boolean expression (conditional formula) is

TRUE.

Syntax 2 is executed when the value of Boolean expression is FALSE.

(c) Example

IF <Boolean expression> THEN

<Syntax ...>;

END_IF;

IF <Boolean expression> THEN

<Syntax 1 ...>;

ELSE

<Syntax 2 ...>;

END_IF;
5.1 ST Language

5.1.3 Syntaxes in the ST language
5-5

(4) IF ...ELSIF conditional syntax

(a) Format

(b) Description

Syntax 1 is executed when the value of Boolean expression (conditional formula) 1 is

TRUE. Syntax 2 is executed when the value of Boolean expression 1 is FALSE and the

value of Boolean expression 2 is TRUE.

Syntax 3 is executed when the value of Boolean expression 1 and 2 are FALSE and the

value of Boolean expression 3 is TRUE.

(c) Example

IF <Boolean expression 1> THEN

<Syntax 1 ...>;

ELSIF <Boolean expression 2> THEN

<Syntax 2 ...>;

ELSIF <Boolean expression 3> THEN

<Syntax 3 ...>;

END_IF;
5-6 5.1 ST Language

5.1.3 Syntaxes in the ST language

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(5) CASE conditional syntax

(a) Format

(b) Description

The result of the CASE conditional expression is returned as an integer value. The

CASE conditional syntax is used to execute a selection syntax by a single integer value

or an integer value as the result of a complicated expression.

When the syntax that has the integer selection value that matches with the value of

integer expression is executed, and if no integer selection value is matched with the

expression value, the syntax that follows the ELSE syntax is executed.

(c) Example

(6) FOR...DO syntax

(a) Format

(b) Description

The FOR...DO syntax repeats the execution of several syntaxes according to the value

of a repeat variable.

(c) Example

CASE <Integer expression> OF

<Integer selection 1> : <Syntax 1 ...>;

<Integer selection 2> : <Syntax 2 ...>;

·

·

·

<Integer selection n> : <Syntax n ...>;

ELSE

<Syntax n+1 ...>;

END_CASE;

FOR <Repeat variable initialization>

TO <Last value>

BY <Incremental expression> DO

<Syntax ...>;

END_FOR;
5.1 ST Language

5.1.3 Syntaxes in the ST language
5-7

(7) WHILE...DO syntax

(a) Format

(b) Description

The WHILE...DO syntax executes one or more syntaxes while the value of Boolean

expression (conditional formula) is TRUE.

The Boolean expression is evaluated before the execution of the syntax. If the value of

Boolean expression is FALSE, the syntax in the WHILE...DO syntax is not executed.

Since a return result of the Boolean expression in the WHILE syntax requires only

TRUE or FALSE, any Boolean expression that can be specified in the IF conditional

syntax can be used.

(c) Example

(8) REPEAT...UNTIL syntax

(a) Format

(b) Description

The REPEAT...UNTIL syntax executes one or more syntaxes while the value of Boolean

expression (conditional formula) is FALSE.

The Boolean expression is evaluated after the execution of the syntax. If the value of

Boolean expression is TRUE, the syntaxes in the REPEAT...UNTIL syntax are not

executed.

Since a return result of the Boolean expression in the REPEAT syntax requires only

TRUE or FALSE, any Boolean expression that can be specified in the IF conditional

syntax can be used.

(c) Example

WHILE <Boolean expression> DO

<Syntax ...>;

END_WHILE;

REPEAT

<Syntax ...>;

UNTIL <Boolean expression>

END_REPEAT;
5-8 5.1 ST Language

5.1.3 Syntaxes in the ST language

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

(9) RETURN syntax

(a) Format

(b) Description

The RETURN syntax is used to end a program in a middle of the process.

When the RETURN syntax is used in a program, the process jumps from the RETURN

syntax execution step to the last line of the program, ignoring all the remaining steps

after the RETURN syntax.

(c) Example

(10) EXIT syntax

(a) Format

(b) Description

The EXIT syntax is used only in iteration syntaxes to end the iteration syntax in a middle

of the process.

When the EXIT syntax is reached during the execution of the iteration loop, the iteration

loop process after the EXIT syntax is not executed. The process continues from the line

after the one where the iteration syntax is ended.

(c) Example

5.1.4 Calling functions in the ST language

The following description is used to call a function in the ST language.

Enclose the arguments by '()' after the function name.

When using multiple variables, delimit them by ','.

The execution result of the function is stored by assigning the result to the variables.

RETURN;

EXIT;

Function name (Variable1, Variable2, ...);
5.1 ST Language

5.1.4 Calling functions in the ST language
5-9

1) Calling a function with one input variable (Example: ABS)

2) Calling a function with three input variables (Example: MAX)

5.1.5 Calling function blocks in the ST language

The following description is used to call a function block in the ST language.

Enclose the assignment syntaxes that assigns variables to the input variable and output variable

by '()' after the instance name.

When using multiple variables, delimit assignment syntaxes by ',' (comma).

The execution result of the function block is stored by assigning the output variable that is

specified by adding '.' (period) after the instance name to the variable.

1) Calling a function block with one input variable and one output variable

The following is the description to call the function block above.

2) Calling a function block with three input variables and two output variables

The following is the description to call the function block above.

Output1 := ABS(Input1);

Output1 := MAX(Input1, Input2, Input3);

Instance name(Input variable1:= Variable1, ... Output variable1: = Variable2, ...);

FB definition

FB Name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Output variable1: OUT1

FBADD1(IN1:=Input1);

Output1:=FBADD1.OUT1;

FB definition

FB Name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Input variable2: IN2

Input variable3: IN3

Output variable1: OUT1

Output variable2: OUT2

FBADD1(IN1:=Input1, IN2:=Input2, IN3:= Input3);

Output1:=FBADD1.OUT1;

Output2:=FBADD1.OUT2;
5-10 5.1 ST Language

5.1.5 Calling function blocks in the ST language

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

5.2 Structured Ladder Language

The structured ladder language is a graphic language for writing programs using network

elements such as contacts, coils, functions, and function blocks.

Write programs on the assumption that the power is supplied from the baseline at the left edge of

the editor to the connected ladders.

5.2.1 Standard format

In the structured ladder language, units of network are used for programming.

The operation order in a network is from the baseline to the right and from the top to the bottom.

Contact Coil

Function

Input variables Output variables

Function block

Network label

① ② ⑥ ⑦ ⑧

③ ④

⑤

5.2 Structured Ladder Language

5.2.1 Standard format
5-11

5.2.2 Network elements in the structured ladder language

The following table shows the network elements that can be used in the structured ladder

language.

Table 5.2.2-1 Network elements in the structured ladder language

Element Network element Description

Contact
Logical operation start (Contact operation start instruction)

Reads ON/OFF data of the specified device or label.

Contact

Logical AND operation (Contact series connection)

Reads ON/OFF data of the specified bit device or label, and performs

an AND operation between the read data and the previous operation

result. The evaluated value is the operation result.

Contact

Logical OR operation (Contact parallel connection)

Reads ON/OFF data of the specified device or label, and performs an

OR operation between the read data and the previous operation result.

The evaluated value is the operation result.

Contact negation
Logical operation start (Contact negation operation start instruction)

Reads ON/OFF data of the specified device or label.

Contact negation

Logical AND operation (Contact negation series connection)

Reads ON/OFF data of the specified bit device or label, and performs

an AND operation between the read data and the previous operation

result.

Contact negation

Logical OR operation (Contact negation parallel connection)

Reads ON/OFF data of the specified device or label, and performs an

OR operation between the read data and the previous operation result.

Coil

Bit device output

Outputs the operation result preformed up to the OUT instruction to

the specified device or label.

Inverted coil

Bit device output inverse

Inverts the status of a specified device or label when the inverse

command turns from OFF to ON.

Set

Device set

Turns ON the specified device or label when the SET input is turned

ON.

The device or label that has been turned ON remains ON when the

SET input is turned OFF.

Reset

Device reset

Turns OFF the specified device or label when the RST input is turned

ON.

If the RST input is OFF, the status of the device does not change.

Jump

Pointer branch instruction

Unconditionally executes the program at the specified pointer number

in the same program file.

Return

Return from subroutine program

Indicates the end of a subroutine program. Returns the step to the

next step after the instruction which called the subroutine program.

Function Executes a function.
5-12 5.2 Structured Ladder Language

5.2.2 Network elements in the structured ladder language

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

Table 5.2.2-2 Network elements in the structured ladder language

Element Network element Description

Function block Executes a function block.

Function argument input Inputs an argument to a function or function block.

Function return value output Outputs the return value from a function or function block.

Function inverted argument input Inverts and inputs an argument to a function or function block.

Function inverted return value

output
Inverts the return value from a function or function block and outputs it.
5.2 Structured Ladder Language

5.2.2 Network elements in the structured ladder language
5-13

MEMO
5-14

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P
P
E
N
D
IX

I

IN
D

E
X

A APPENDIX

Appendix 1 Character Strings that cannot be Used in Label Names and Data Names App-2

Appendix 2 Recreating Ladder Programs . App-4
App-1

Appendix 1 Character Strings that cannot be Used in

Label Names and Data Names

Character strings used for application function names, common instruction names, special

instruction names, and instruction words are called reserved words.

These reserved words cannot be used for label names or data names. If the character string

defined as a reserved word is used for a label name or data name, an error occurs during

registration or compilation.

The following table shows character strings that cannot be used for label names or data names.

Table App. 1-1 Character strings that cannot be used for label names and data names (1/2)

Category Character string

Class identifier

VAR, VAR_RETAIN, VAR_ACCESS, VAR_CONSTANT, VAR_CONSTANT_RETAIN, VAR_INPUT, VAR_INPUT_RETAIN,

VAR_OUTPUT, VAR_OUTPUT_RETAIN, VAR_IN_OUT, VAR_IN_EXT, VAR_EXTERNAL, VAR_EXTERNAL_CONSTANT,

VAR_EXTERNAL_CONSTANT_RETAIN, VAR_EXTERNAL_RETAIN, VAR_GLOBAL, VAR_GLOBAL_CONSTANT,

VAR_GLOBAL_CONSTANT_RETAIN, VAR_GLOBAL_RETAIN

Data type
BOOL, BYTE, INT, SINT, DINT, LINT, UINT, USINT, UDINT, ULINT, WORD, DWORD, LWORD, ARRAY, REAL,

LREAL, TIME, STRING

Data type hierarchy ANY, ANY_NUM, ANY_BIT, ANY_REAL, ANY_INT, ANY_DATE, ANY_SIMPLE, ANY16, ANY32

Device name
X, Y, D, M, T, B, C, F, L, P, V, Z, W, I, N, U, J, K, H, E, A, SD, SM, SW, SB, FX, FY,

DX, DY, FD, TR, BL, SG, VD, ZR, ZZ

Character string

recognized as device

(Device name +

Numeral)

Such as X0

ST operator NOT, MOD

IL operator

LD, LDN, ST, STN, S, S1, R, R1, AND, ANDN, OR, ORN, XOR, XORN, ADD, SUB, MUL, DIV, GT, GE, EQ,

NE, LE, LT, JMP, JMPC, JMPCN, CAL, CALC, CALCN, RET, RETC, RETCN, LDI, LDP, LDF, ANI, ANDP,

ANDF, ANB, ORI, ORP, ORF, ORB, MPS, MRD, MPP, INV, MEP, MEF, EGP, EGF, OUT(H), SET, RST, PLS,

PLF, FF, DELTA(P), SFT(P), MC, MCR, STOP, PAGE, NOP, NOPLF

Application instruction

in GX Works2

Application instructions such as DMOD, PCHK, INC(P)

 QCPU (Q Mode)/QnACPU Programming Manual (Common Instructions), QCPU Structured Programming Manual (Common

Instructions)

SFC instruction

SFCP, SFCPEND, BLOCK, BEND, TRANL, TRANO, TRANA, TRANC, TRANCA, TRANOA, SEND, TRANOC, TRANOCA,

TRANCO, TRANCOC, STEPN, STEPD, STEPSC, STEPSE, STEPST, STEPR, STEPC, STEPG, STEPI, STEPID,

STEPISC, STEPISE, STEPIST, STEPIR, TRANJ, TRANOJ, TRANOCJ, TRANCJ, TRANCOJ, TRANCOCJ

ST code body

RETURN, IF, THEN, ELSE, ELSIF, END_IF, CASE, OF, END_CASE, FOR, TO, BY, DO, END_FOR, WHILE,

END_WHILE, REPEAT, UNTIL, END_REPEAT, EXIT, TYPE, END_TYPE, STRUCT, END_STRUCT, RETAIN,

VAR_ACCESS, END_VAR, FUNCTION, END_FUNCTION, FUCTION_BLOCK, END_FUCTION_BLOCK, STEP,

INITIAL_STEP, END_STEP, TRANSITION, END_TRANSITION, FROM, TO, UNTILWHILE

Standard function name Function names in application functions such as AND_E, NOT_E
App-2 Appendix 1 Character Strings that cannot be Used in Label Names and Data Names

A

A
PP

EN
D

IX
Table App. 1-1 Character strings that cannot be used for label names and data names (2/2)

(1) Precautions on using labels
 • For label names and instance names, the same name as the one used for data names of

task, structured data, POUs and the like cannot be used.

 • A space cannot be used.

 • A numeral cannot be used in the first character of a label name.

 • A label name is case-sensitive during compilation.

Category Character string
Standard function block
name

Function block names in application functions such as CTD, CTU

Symbol ", %, ', ~, ^, ¦, @, [,] , {, }, ;, :, , , ., ?, \, !, #, $, ', _, *, /, +, <, >, =, &, (,), -

Date and time literal DATE, DATE_AND_TIME, DT, TIME, TIME_OF_DAY, TOD

Others

ACTION, END_ACTION, CONFIGURATION, END_CONFIGURATION, CONSTANT, F_EDGE, R_EDGE, AT, PROGRAM,
WITH, END_PROGRAM, TRUE, FALSE, READ_ONLY, READ_WRITE, RESOURCE, END_RESOURCE, ON, TASK,
EN, ENO, BODY_CCE, BODY_FBD, BODY_IL, BODY_LD, BODY_SFC, BODY_ST, END_BODY, END_PARAMETER_SECTION,
PARAM_FILE_PATH, PARAMETER_SECTION, SINGLE, TRUE, FALSE, RETAIN, INTERVAL, L, P

String that starts with K1
to K8

Such as K1AAA

Address Such as %IX0

Statement in ladder
language

;FB BLK START, ;FB START, ;FB END, ;FB BLK END, ;FB IN, ;FB OUT, ;FB_NAME;,INSTANCE_NAME,
;FB, ;INSTANCE

Common instruction Such as MOV

Windows reserved word
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9,
AUX, CON, PRN, NUL
Appendix 1 Character Strings that cannot be Used in Label Names and Data Names App-3

Appendix 2 Recreating Ladder Programs

This section provides an example of creating a structured program same as the program created

in the ladder programming language using GX Works2.

Appendix 2.1 Procedure for creating a structured program

The following explains the basic procedure for creating a structured program based on the

program created in the ladder programming language.

(1) Replacing devices with labels

(2) Setting labels

(3) Creating a program

Procedure

Labels include global labels and local labels.

Determine the type of labels (global label or local label) to replace devices.

Procedure

Global labels and local labels to be used in the program must be defined.

Define all labels to be used in the program.

Procedure

Create a structured program in the programming language to be used.
App-4 Appendix 2 Recreating Ladder Programs

Appendix 2.1 Procedure for creating a structured program

A

A
P
P
E
N
D
IX
Appendix 2.2 Example of creating a structured program

This section shows an example of creating a sequence program same as the program created in

GX Developer using GX Works2.

The following examples explain the method for creating a structured program same as the data

receive program for a Q-compatible serial communication module, using the structured ladder

and ST languages.

The following shows the original program.

(1) Replacing devices with labels

Replace devices of the original program with labels.

Replace input/output devices with global labels. For devices such as internal relays, replace

them with local labels.

Table App. 2.2-1 Examples of replacement from devices to labels

Device Purpose
Label

Data type Label name

X3 CH1 reception data read request Bit CH1ReadRequest

X4 CH1 reception abnormal detection Bit CH1AbnormalDetection

D0

Control data

Reception channel

Word (unsigned)/16-bit

string [0] to [3]
ControlData

D1 Reception result

D2 Number of reception data

D3
Number of allowable reception

data

D10 to D109 Reception data
Word (unsigned)/16-bit

string [0] to [99]
RecieveData

D110 to D209 Reception data storage area
Word (unsigned)/16-bit

string [0] to [99]
Data

M0 Data

reception

completion

flag

Completion flag

Bit [0] to [1] Completion
M1 Status flag at completion

M100 Abnormal completion flag Bit AbnormalCompletion

X100 Abnormal completion flag reset command Bit ResetAbnormalCompletion

Clear the reception result and receive data count
storage device to 0.

With normal completion, the receive data within the

allowable receive data count (user specified) is read

from the receive data storage area in the buffer memory.
 Once the INPUT instruction is executed, the user

specified read completion signal (M0) turns ON for

1 scan.

 The reading of receive data and switching of the
 ON/OFF status are performed by the PLC CPU.

•

•

The abnormal completion flag is reset by an external
command.

Specify the receive channel.

Specify the allowable receive data count.
Appendix 2 Recreating Ladder Programs

Appendix 2.2 Example of creating a structured program
App-5

(2) Setting labels
Set global labels and local labels.

 • Setting examples of global labels

 • Setting examples of local labels

App-6 Appendix 2 Recreating Ladder Programs
Appendix 2.2 Example of creating a structured program

A

A
P
P
E
N
D
IX
(3) Creating a structured program

The following examples show how a structured program is created based on the original

program.

 • Original program (Programming language: ladder)

 • Structured program (Programming language: structured ladder)

1

2

3

1

2

3

Appendix 2 Recreating Ladder Programs

Appendix 2.2 Example of creating a structured program
App-7

 • Original program (Programming language: ladder)

 • Structured program (Programming language: ST)

*1: When using multiple contacts for execution conditions, enclose them by '()' to be

programmed in a group.

1

2

3

*1

*1

*1

*1

1

2

3

App-8 Appendix 2 Recreating Ladder Programs

Appendix 2.2 Example of creating a structured program

1

O
V

E
R

V
IE

W

2

S
T

R
U

C
T

U
R

E
D

 D
E

S
IG

N
 O

F

S
E

Q
U

E
N

C
E

 P
R

O
G

R
A

M
S

3

P
R

O
C

E
D

U
R

E
 F

O
R

C
R

E
A

T
IN

G
 P

R
O

G
R

A
M

S

4

P
R

O
G

R
A

M

C
O

N
F

IG
U

R
A

T
IO

N

5

W
R

IT
IN

G

P
R

O
G

R
A

M
S

A

A
P

P
E

N
D

IX

I

IN
D
E
X

I INDEX
Index-1

[A]

address ... 4-19,4-20

array .. 4-23

[C]

calling function blocks ... 5-10

calling functions... 5-9

class .. 4-15

constant... 4-16

[D]

data types.. 4-16

device.. 4-20

[E]

elementary data types... 4-16

EN ... 4-13

ENO .. 4-13

executing condition ... 4-4

[F]

function blocks .. 4-7

functions.. 4-6

[G]

generic data type... 4-17

global labels .. 4-14

[H]

hierarchy ... 1-2,2-2

[I]

input variables ... 4-15

input/output variables .. 4-15

instances ... 4-7,4-12

[L]

libraries.. 4-26

local labels .. 4-14

[N]

network elements .. 5-12

network label ... 4-8

networks.. 4-8

[O]

operators ... 5-3

output variables... 4-10,4-15

[P]

POU .. 4-5

priority ... 4-4

program... 4-5

program blocks.. 4-6

program files ... 4-3

project ... 2-2,4-3

[S]

ST.. 4-9

standard format ... 5-2,5-11

structured design... 1-2

structured ladder ... 4-9

structured programs .. 1-2

structures... 4-25

structuring.. 2-3

syntax .. 5-4

[T]

tasks .. 4-4

[U]

user libraries.. 4-27
Index-2

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the

gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the

customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing onsite that

involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the

longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not

exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow

the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the

user's hardware or software design.

2. Failure caused by unapproved modifications, etc., to the product by the user.

3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or

structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry

standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction

manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure

such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center

may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to damages caused by any cause found not

to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special

damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to

products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other

tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

(1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not lead to a

major accident even if any problem or fault should occur in the programmable controller device, and that backup and fail-safe

functions are systematically provided outside of the device for any problem or fault.

(2) The Mitsubishi MELSEC programmable controller has been designed and manufactured for applications in general industries,

etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated

by respective power companies, and applications in which a special quality assurance system is required, such as for Railway

companies or Public service purposes shall be excluded from the programmable controller applications. In addition,

applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration

and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded

from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative

outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances,

solely at the users discretion.

Microsoft, Windows are registered trademarks of Microsoft Corporation in the United States and other countries.

Other company names and product names used in this document are trademarks or registered trademarks of respective

companies.

Structured Programming Manual (Fundamentals)

QCPU

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the

Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

	SAFETY PRECAUTIONS
	REVISIONS
	INTRODUCTION
	CONTENTS
	MANUALS
	PURPOSE OF THIS MANUAL
	GENERIC TERMS AND ABBREVIATIONS USED IN THIS MANUAL
	1. OVERVIEW
	1.1 Overview
	1.2 Features of Structured Programs
	1.3 Applicable CPU Modules
	1.4 Compatible Software Package

	2. STRUCTURED DESIGN OF SEQUENCE PROGRAMS
	2.1 What is a Hierarchical Sequence Program?
	2.2 What is a Structured Sequence Program?

	3. PROCEDURE FOR CREATING PROGRAMS
	3.1 Procedure for Creating Sequence Programs in Structured Project

	4. PROGRAM CONFIGURATION
	4.1 Overview of Program Configuration
	4.1.1 Project
	4.1.2 Program files
	4.1.3 Tasks

	4.2 POUs
	4.2.1 Types of POU
	4.2.2 Program blocks
	4.2.3 Functions
	4.2.4 Function blocks
	4.2.5 Networks
	4.2.6 Programming languages for POUs
	4.2.7 Functions and function blocks
	4.2.8 EN and ENO

	4.3 Labels
	4.3.1 Global labels
	4.3.2 Local labels
	4.3.3 Label classes
	4.3.4 Data types

	4.4 Device and Address
	4.4.1 Device
	4.4.2 Address
	4.4.3 Correspondence between devices and addresses

	4.5 Arrays
	4.6 Structures
	4.7 Libraries
	4.7.1 User libraries

	5. WRITING PROGRAMS
	5.1 ST Language
	5.1.1 Standard format
	5.1.2 Operators in the ST language
	5.1.3 Syntaxes in the ST language
	5.1.4 Calling functions in the ST language
	5.1.5 Calling function blocks in the ST language

	5.2 Structured Ladder Language
	5.2.1 Standard format
	5.2.2 Network elements in the structured ladder language

	APPENDIX
	Appendix 1 Character Strings that cannot be Used in Label Names and Data Names
	Appendix 2 Recreating Ladder Programs
	Appendix 2.1 Procedure for creating a structured program
	Appendix 2.2 Example of creating a structured program

	INDEX

