MITSUBISH QD72P3C3 Type Positioning Module with Built-in Counter Function

User's Manual

(Hardware)

QD72P3C3

Thank you for purchasing the Mitsubishi programmable controller MELSEC-Q series.

Prior to use, please read this and relevant manuals thorougly to fully understand the product.

MODEL	QD72P3C3-U-HW
MODEL CODE	$13 J Y 35$
IB(NA)--0800388-A(0704)MEE	

- SAFETY PRECAUTIONS

(Read these precautions before use.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product. For the safety precautions of the programmable controller system, please read the User's Manual for the CPU module.
In this section, the safety precautions are ranked as "DANGER" and "CAUTION".

Note that the CAUTION level may lead to a serious consequence according to the circumstances.
Always follow the precautions of both levels because they are important to personal safety.
Please save this manual to make it accessible when required and always forward it to the end user.

[INSTALLATION PRECAUTIONS]

\triangle CAUTION

- Use the programmable controller in the environment conditions given in the general specifications in the User's Manual for the CPU module. Failure to do so may cause an electric shock, fire, malfunction, or damage to or deterioration of the product.
- While pressing the installation lever located at the bottom of the module, fully insert the module fixing projection into the fixing hole in the base unit to mount the module. Incorrect module mounting may cause a malfunction, failure, or drop of the module. In an environment of frequent vibrations or impacts, secure the module with screws. The screws must be tightened within the specified torque range. If the screw is too loose, it may cause a drop or malfunction. Excessive tightening may damage the screw and/or the module, resulting in a drop or malfunction.
- Be sure to shut off all phases of the external power supply used by the system before mounting or removing the module. Failure to do so may cause damage to the product.
- Do not directly touch any conductive part or electronic part of the module. Doing so may cause a malfunction or failure of the module.

DANGER

- Be sure to shut off all phases of the external power supply used by the system before installation or wiring.
Failure to do so may cause an electric shock or damage to the product.

. CAUTION

- Correctly wire cables to the module after checking the terminal layout.
- Solder an external device connector correctly.

Failure to do so may cause a malfunction.

- Be careful to prevent foreign matter such as dust or wire chips from entering the module.
Failure to do may cause a fire, failure or malfunction.
- A protective film is attached to the module top to prevent foreign matter such as wire chips from entering the module during wiring.
Do not remove the film during wiring.
Be sure to remove it for heat dissipation before system operation.
- Securely connect an external device connector to the module connector and fully tighten the two screws.
- When disconnecting the external wiring cable connected to the module, do not pull it by holding the cable part. Disconnect the cable with connector with holding the connector plugged into the module. Pulling the cable part with the cable still connected to the module may cause a malfunction or damage to the module and/or cable.
- Do not install cables for connecting external I/O signals of the QD72P3C3 and drive unit together with the main circuit cables, power cables, and/or the load cables for any other than programmable controllers or not bring them close to each other.
Keep a distance of 100 mm (3.94 inch) or more between them. Failure to do so may cause a malfunction due to noise, surge or induction.

Revisions

* The manual number is given on the bottom right of the cover.

Print date	${ }^{*}$ Manual number	Revision
Apr., 2007	IB(NA)-0800388-A	First edition

This manual confers no industrial property rights or any rights of any other kinds, nor does it confer any licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

CONTENTS

1. OVERVIEW 1
2. SPECIFICATIONS 2
2.1 Performance Specifications 2
2.2 Electrical Specifications of I/O Signals 3
3. HANDLING 7
3.1 Handling Precautions 8
4. PART NAMES 9
5. WIRING 12
5.1 Wiring Precautions 12
5.2 External Interface 15
6. SETTING FROM GX Developer 16
7. EXTERNAL DIMENSIONS 18
Manual
The following manual is also related to this product.

Order it if necessary.
Related manual

Manual name	Manual No. (Model code)
QD72P3C3 Type Positioning Module with Built-in Counter Function User's Manual	SH-080683ENG (13JR99)

Compliance with the EMC and Low Voltage Directives

When incorporating the Mitsubishi programmable controller into other machinery or system and ensuring compliance with the EMC and Low Voltage Directives, refer to Chapter 3 "EMC and Low Voltage Directive" of the User's Manual (Hardware) for the CPU module. The CE logo is printed on the rating plate of the programmable controller, indicating compliance with the EMC and Low Voltage Directives.
To conform this product to the EMC and Low Voltage Directives, refer to Chapter 5 "WIRING".

1. OVERVIEW

This manual describes how to handle the QD72P3C3 type positioning module with built-in counter function (hereinafter abbreviated as QD72P3C3).
After unpacking the QD72P3C3, verify that the following product is included.

Model	Product name	Quantity
QD72P3C3	QD72P3C3 type positioning module with built-in counter function	1

A Connector for external wiring is not included, purchase it if required.

* Connector model name
- A6CON1 (soldering type, straight out)
- A6CON2 (crimp type, straight out)
- A6CON4 (soldering type, usable for both straight out and diagonal out)
* A6CON2 crimp tool
- Model: FCN-363T-T005/H
- Contact: FUJITSU COMPONENT LIMITED

2. SPECIFICATIONS

2.1 Performance Specifications

Item		Specification		
Position control	Number of axes	3 axes		
	Interpolation function	None (Artificial linear interpolation by concurrent start is available.)		
	Control method	PTP (Point To Point) control, speed control		
	Control unit	Pulse		
	Positioning data	1 data/axis (Set it with GX Configurator-PT or sequence program.)		
	Position control method	Incremental system, absolute system		
	Position control range	[Incremental fashion] - 1073741824 to 1073741823 pulse [Absolute fashion] (when using linear counter) - 1073741824 to 1073741823 pulse (when using ring counter) 0 to 1073741823 pulse		
	Speed command	1 to 100000 pulses/s		
	Acceleration/ deceleration processing	Trapezoidal acceleration/deceleration		
	Acceleration/ deceleration time	1 to 5000 ms		
	Start time	Position control, speed control	1-axis start	1 ms
			3-axes concurrent start	1 ms
	Pulse output method	Open collector output		
	Maximum output pulse	100 kpps		
	Maximum connection distance between drive units	2 m		
Counter function	Counting speed (max.)	100 kpps		
	Number of channels	3 channels		
	Counting range	31-bit signed binary [Linear counter] - 1073741824 to 1073741823 [Ring counter] 0 to 1073741823		
	External connection system	40-pin connector		
	Applicable wire size	$0.3 \mathrm{~mm}^{2}$ (for the A6CON 1 and A6CON4), AWG\#24 (for the A6CON2)		
Peripheral/compatible utility package		GX Configurator-PT (sold separately)		
Data backup		None		
External device connector		A6CON1, A6CON2, A6CON4 (sold separately)		

Item	Specification
Internal current consumption (5VDC)	0.57 A
Number of occupied I/O points	32 points (I/O assignment: Intelligent 32 points)
Weight	0.16 kg

For electrical specifications of count input signals, refer to Section 2.2
Electrical Specifications of I/O Signals.

2.2 Electrical Specifications of I/O Signals

(1) Input specifications
(a) Input specifications of external input device for positioning

Signal name	Rated input voltage/ current	Operating voltage range	ON voltage/ current	OFF voltage/ current	Input resistance	Response time
	$\begin{aligned} & 5 \mathrm{VDC} / 18 \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.5 \\ & \text { VDC } \end{aligned}$	2.7 VDC or more/ 5.5 mA or more	1.0 VDC or less/ 0.5 mA or less	Approx. 390Ω	$\begin{array}{\|l} 0.1 \mathrm{~ms} \text { or } \\ \text { less } \end{array}$
Zero signal (PG0)						
Near-point dog signal (DOG) Upper limit signal (FLS) Lower limit signal (RLS)	$\begin{aligned} & 24 \mathrm{VDC} / 5 \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 19.2 \text { to } \\ & \text { 26.4 VDC } \end{aligned}$	17.5 VDC or more/3.0 mA or more	7.0 VDC or less/0.9 mA or less	Approx. $6.8 \mathrm{k} \Omega$	$\begin{aligned} & 1 \mathrm{~ms} \text { or } \\ & \text { less } \end{aligned}$

（b）Input specifications for the counter function

Signal name	Rated input voltage／ current	Operating voltage range	ON voltage／ current	OFF voltage／ current	Input resist－ ance	Response time
5 VDC	$\begin{aligned} & 5 \mathrm{VDC} / 18 \\ & \mathrm{~mA} \end{aligned}$	4.5 to 5.5 V	2．7 VDC or more／5． 5 mA or more	1.0 VDC or less／0．5 mA or less	Approx． 390』	$1 \mu \mathrm{~s}$ or less
24 VDC	$\begin{aligned} & 24 \mathrm{VDC} / 2 \\ & \text { to } 6 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 21.6 \text { to } \\ & 26.4 \mathrm{~V} \end{aligned}$	21．6 VDC or more／2 mA or more	5 VDC or less／0．1 mA or less	Approx． $3900+$ 390』	1μ s or less

－Input pulse can be selected from 1 multiple of 2 phases， 2 multiples of 2 phases， 4 multiples of 2 phases，and CW／CCW．
Set it in pulse input mode of＂Intelligent function module switch setting＂ （refer to Chapter 6）．

Phase A pulse input（CH A＿5V／ CH A＿24V）

Phase B pulse input（CH B＿5V／ CH B＿24V）

Pulse input mode	Addition count	Subtraction count
$\begin{gathered} \text { CW } \\ \text { CCW } \end{gathered}$	ФA \square ФВ \qquad	ФА \qquad ФВ f t
1 multiple of 2 phases		ФА $\downarrow \downarrow$ Фв 」ூ
2 multiples of 2 phases		ФА＿？ Фв」に
4 multiples of 2 phases	$\begin{aligned} & \text { ФА } \uparrow \uparrow \downarrow \\ & \text { ФВ } \downarrow \uparrow \downarrow \end{aligned}$	ФA＿ทน $\Phi \mathrm{B}$ 凡 \downarrow

－The minimum count pulse width is as follows．

（Duty ratio 50\％）
（Minimum phase difference for 2－phase input： $2.5 \mu \mathrm{~s}$ ）
－The rise／fall time is as follows．

Rise／fall time	100 k
	Both 1 and 2－phase input
$t=1.25 \mu_{\text {s }}$ or less	100 kPPS
$t=2.5 \mu_{\text {s }}$ or less	100 kPPS
$t=25 \mu_{\text {s }}$ or less	10 kPPS
$t=500 \mu_{\mathrm{S}}$	-

－Input pulse can be selected from 1 multiple of 2 phases， 2 multiples of 2 phases， 4 multiples of 2 phases，and CW／CCW．
Set the pulse in pulse input mode of＂Intelligent function module switch setting＂（refer to Chapter 6）．
（2）Output specifications
（a）Output specifications of external output device for positioning

Signal name	Rated load voltage	Operating load voltage range	Max．load current／inrush current	Max． voltage drop at ON	Leak－ age current at OFF	Response time
	5 to 24 VDC	4.75 to 30 VDC	$50 \mathrm{~mA} /$ point 200 mA 10 ms or less／ point	5 VDC （typ．）	0.1 mA or less	-
	－					

－Set pulse output mode and pulse output logic selection with＂Intelligent function module switch setting＂（refer to Chapter 6）．
－The following table shows the relationship of＂pulse output mode＂and ＂pulse output logic selection＂with pulse output．

Pulse output F （PULSE F）（CW／ PULSE）	Pulse output mode	Pulse output logic selection			
		Positive logic		Negative logic	
		Forward run	Reverse run	Forward run	Reverse run
Pulse output R （PULSE R）（CCW／ SIGN）	$\begin{gathered} \text { CW } \\ \text { CCW } \end{gathered}$	■にし		レー凸ŋ	
	PULSE SIGN	$\underset{\text { High }}{\square \square \square}$			

The rise／fall time and duty ratio are as the table on the next page．＊

					2 ms or less （resistance	
Deviation counter clear（CLEAR）	5 to 24 VDC	4.75 to 30 VDC	$0.1 \mathrm{~A} /$ point $0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less／point	1 VDC （typ．） 2.5 VDC （max．）	0.1 mA or less	Pulse width is from 1 to 20 ms．

*: Pulse rise/fall time (unit tr,tf: $\mu \mathrm{s}$ Duty: \%)...Ambient air temperature is assumed to be ordinary temperature.

Load vo	age (V)	26.4					
Cable length (m)		1			2		
Load current (mA)	Pulse speed (kpps)	$\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$	$\begin{gathered} \mathrm{tf} \\ \text { (Fall) } \end{gathered}$	Duty	$\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$	$\begin{gathered} \mathrm{tf} \\ \text { (Fall) } \end{gathered}$	Duty
2	100	2.341	0.156	44.76	2.824	0.162	42.45
	10	2.849	0.169	49.1	3.727	0.182	49.08
5	100	1.101	0.176	49.7	1.487	0.188	48.37
	10	1.114	0.174	49.6	1.516	0.190	49.83
10	100	0.511	0.188	51.4	0.753	0.203	50.89
	10	0.522	0.187	50.15	0.745	0.204	50.09
20	100	0.268	0.218	52.37	0.379	0.233	52.18
	10	0.262	0.218	50.24	0.376	0.234	50.22
50	100	0.098	0.344	53.34	0.140	0.359	53.33
	10	0.097	0.347	50.34	0.135	0.361	50.34

Load voltage (V) Cable length (m)		4.75					
		1			2		
Load current (mA)	Pulse speed (kpps)	$\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$	$\begin{gathered} \text { tf } \\ \text { (Fall) } \end{gathered}$	Duty	$\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$	$\begin{gathered} \mathrm{tf} \\ \text { (Fall) } \end{gathered}$	Duty
2	100	0.510	0.107	50.87	0.712	0.113	50.38
	10	0.492	0.107	50.08	0.680	0.112	50.04
5	100	0.207	0.117	51.8	0.289	0.120	51.74
	10	0.201	0.113	50.19	0.288	0.119	50.18
10	100	0.097	0.129	52.29	0.138	0.131	52.28
	10	0.098	0.128	50.23	0.131	0.130	50.23
20	100	0.039	0.160	52.75	0.055	0.159	52.80
	10	0.038	0.159	50.28	0.054	0.158	50.28
50	100	0.015	0.255	53.41	0.016	0.258	53.47
	10	0.014	0.254	50.34	0.016	0.259	50.36

3. HANDLING

DANGER

- Create a safety circuit outside the programmable controller so that the entire system will function safely even when an external power supply error or programmable controller fault occurs. Failure to do so may cause an accident due to an incorrect output or malfunction.
(1) Outside the programmable controller, create an emergency stop circuit or interlock circuit to prevent mechanical damage due to excess of position control upper limit/lower limit.
(2) The OPR control is controlled by the OPR direction and OPR speed data and deceleration starts when the near-point dog turns ON. Thus, if the OPR direction is incorrectly set, deceleration may not start and the motor continues rotating. Create an interlock circuit outside the programmable controller to prevent mechanical damage.
(3) If the positioning module detects an error, it directs the motor to decelerate and stop. Set the OPR data and positioning data within the parameter setting values.

\triangle CAUTION

- Use the programmable controller in the environment conditions given in the general specifications in the User's Manual for the CPU module. Failure to do so may cause an electric shock, fire, malfunction, or damage to or deterioration of the product.
- While pressing the installation lever located at the bottom of the module, fully insert the module fixing projection into the fixing hole in the base unit to mount the module. Incorrect module mounting may cause a malfunction, failure, or drop of the module.
In an environment of frequent vibrations or impacts, secure the module with screws.
The screws must be tightened within the specified torque range. If the screw is too loose, it may cause a drop or malfunction.
Excessive tightening may damage the screw and/or the module, resulting in a drop or malfunction.
- Be sure to shut off all phases of the external power supply used by the system before mounting or removing the module.
Failure to do so may cause damage to the product.
- Do not directly touch any conductive part or electronic part of the module. Doing so may cause a malfunction or failure of the module.

3.1 Handling Precautions

(1) Since the module case is made from resin, do not drop the module or apply a strong impact to it.
(2) The module can easily be secured to the base unit using the hooks located at the top of the module. However, if the module is placed in an environment of frequent vibrations or impacts, securing the module with module fixing screws is recommended. In this case, tighten the module fixing screws within the following torque range. Module fixing screw (M3): Tightening torque range is from 0.36 to $0.48 \mathrm{~N} \cdot \mathrm{~m}$.

4. PART NAMES

(1) Part names

No.	Name	
1$)$	RUN LED	
2$)$	ERR. LED	Refer to the next page.
3$)$	AX LED	
4$)$	ϕ A LED	
5$)$	ϕ B LED	Connector for connecting a drive unit and an encorder
6$)$	External device connector	mechanical input

(2) LED display contents

	Display contents	Operation status	Description
$\quad \square \mathrm{AX}$		- RUN LED is OFF. (The status of ERR. and AX1 to AX3 are indefinite.)	Hardware fault or module error
	$\mathrm{CH}_{3} \mathrm{CH} 2 \mathrm{CH} 1$ RUN \square $\square \square \square A X$ AX ϕA ERR. $\square \square \square \square \phi \mathrm{B}$	- RUN LED is ON. - ERR. LED is OFF.	The module is normal.
		- ERR. LED is ON.	System error
		$\begin{aligned} & \text { - AX_CH 1to } \\ & \text { AX_CH } 3 \text { are } \\ & \text { OFF. } \end{aligned}$	The axis is in stop or standby status.
	CH3 CH 2 CH 1 RUN \square $\square \square A^{\square}$ ERR. $\square \square \square \square \phi \mathrm{B}$	- AX CH1 is ON.(LED corresponding to the CH turns ON .)	The axis is in operation.
		- AX _CH1 is flashing.(LED corresponding to the CH flashes.) - LED ERR. is flashing.	Axis/CH error
	CH3 $\mathrm{CH}_{2} \mathrm{CH} 1$ RUN $\square \square \square A X$ ERR. $\square \square \square \square \phi B$	- $\phi \mathrm{A} _\mathrm{CH} 1$ is ON.(LED corresponding to the CH turns ON .)	Voltage is being applied to phase A.
		- ϕ B_CH1is ON.(LED corresponding to the CH turns ON .)	Voltage is being applied to phase B.

Symbols in the Display contents columns indicate the following status:
: OFF, \square : ON,
Flashing
(3) Signal assignment of external device connector (axis 1)

Pin layout	CON2 (for axis 3)				CON1 (for axes 1 and 2)			
	Pin No.	Signal name	$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name
	B20	NC	A20	CH3A 24V	B20	CH2A 24V	A20	CH1A_24V
	B19	NC	A19	CH3A_5V	B19	CH2A_5V	A19	CH1A_5V
	B18	NC	A18	$\begin{aligned} & \text { CH3A } \\ & \text { COM }^{\star 1} \end{aligned}$	B18	$\begin{aligned} & \text { CH2A } \\ & \mathrm{COM}^{* 1} \end{aligned}$	A18	$\begin{aligned} & \text { CH1A } \\ & \text { COM }^{\star 1} \end{aligned}$
	B17	NC	A17	CH3B_24V	B17	CH2B_24V	A17	CH1B_24V
	B16	NC	A16	CH3B_5V	B16	CH2B_5V	A16	CH1B_5V
	B15	NC	A15	$\begin{aligned} & \mathrm{CH} 3 \mathrm{~B} \\ & \mathrm{COM}^{* 2} \end{aligned}$	B15	$\begin{aligned} & \mathrm{CH} 2 \mathrm{~B} \\ & \mathrm{COM}^{*} \end{aligned}$	A15	$\begin{aligned} & \text { CH1B } \\ & \text { COM }^{*} \end{aligned}$
	B14	NC	A14	PG03	B14	PG02	A14	PG01
	B13	NC	A13	$\begin{aligned} & \text { PG03 } \\ & \text { COM }^{*} \end{aligned}$	B13	$\begin{aligned} & \text { PG02 } \\ & \text { COM }^{* 3} \end{aligned}$	A13	$\begin{aligned} & \text { PG01 } \\ & \text { COM }^{* 3} \end{aligned}$
	B12	NC	A12	CLEAR3	B12	CLEAR2	A12	CLEAR1
	B11	NC	A11	$\begin{aligned} & \text { CLEAR33 } \\ & \text { COM }^{* 4} \end{aligned}$	B11	$\begin{aligned} & \text { CLEAR2 } \\ & \text { COM }^{* 4} \end{aligned}$	A11	$\begin{aligned} & \hline \text { CLEAR1 } \\ & \text { COM }^{* 4} \end{aligned}$
	B10	NC	A10	DOG3	B10	DOG2	A10	DOG1
	B9	NC	A9	COM1-3* ${ }^{*}$	B9	COM1-3*5	A9	COM1-3*5
	B8	NC	A8	FLS3	B8	FLS2	A8	FLS1
	B7	NC	A7	COM1-3*	B7	COM1-3* ${ }^{\text {² }}$	A7	COM1-3* ${ }^{\text {¢ }}$
	B6	NC	A6	RLS3	B6	RLS2	A6	RLS1
	B5	NC	A5	COM1-3*	B5	COM1-3* ${ }^{\text {² }}$	A5	COM1-3* ${ }^{\text {² }}$
	B4	NC	A4	PULSE F3	B4	PULSE F2	A4	PULSE F1
	B3	NC	A3	$\begin{aligned} & \hline \text { PULSE } \\ & \text { COM1-36 } \end{aligned}$	B3	$\begin{aligned} & \text { PULSE } \\ & \text { COM1-3*6 } \end{aligned}$	A3	$\begin{aligned} & \text { PULSE } \\ & \text { COM1-3*6 } \end{aligned}$
	B2	NC	A2	PULSE R3	B2	PULSE R2	A2	PULSE R1
	B1	NC	A1	$\begin{aligned} & \hline \text { PULSE } \\ & \text { COM1-3*6 } \end{aligned}$	B1	$\begin{aligned} & \text { PULSE } \\ & \text { COM1-3*6 } \end{aligned}$	A1	$\begin{aligned} & \text { PULSE } \\ & \text { COM1-3*6 } \end{aligned}$

*1: Common for $\mathrm{CH} \square \mathrm{A}-5 \mathrm{~V}$ and $\mathrm{CH} \square \mathrm{A}-24 \mathrm{~V}$ (\square corresponds to any of channels No. 1 to 3.)
*2: Common for $\mathrm{CH} \square \mathrm{B}-5 \mathrm{~V}$ and $\mathrm{CH} \square \mathrm{B}-24 \mathrm{~V} \square$ (\square corresponds to any of channels No. 1 to 3.)
*3: Common for PG0 \square (\square corresponds to any of axes No. 1 to 3.)
*4: Common for CLEAR \square (\square corresponds to any of axes No. 1 to 3.)
*5: Common for DOG \square, FLS \square, and RLS \square (\square corresponds to any of axes No. 1 to 3.)
*6: Common for PULSE F \square and PULSE R \square (\square corresponds to any of axes No. 1 to 3.)

5. WIRING

(1)DANGER

- Be sure to shut off all phases of the external power supply used by the system before installation or wiring.
Failure to do so may cause an electric shock or damage to the product.

5.1 Wiring Precautions

(1) If bringing cables to be connected to the QD72P3C3 and power cables are close to each other (less than 100 mm (3.94 inch)), use shielded cables. The shield has to be grounded on the QD72P3C3 side to the control panel.

Take off the insulating tube of each shield and electrically connect the shields of the cables with conductive tapes.
Cover the conductive part with insulating tape.

Cover the cables including the conductive tape with heat-shrinkable tube.

(2) Clamp the shielded cable to be connected to the QD72P3C3. If not, the dangling cables may swing or inadvertently be pulled, resulting in malfunctions due to damage of the QD72P3C3, drive unit and/or shielded cable, or poor connection of the shielded cables.
(3) To conform the cables to the EMC and Low Voltage Directives, ground them to a control panel with the AD75CK cable clamp (manufactured by Mitsubishi Electric Corporation).

Maximum four shielded cables whose external dimension is around 7 mm (0.28 inch) can be grounded with the AD75CK.
(For details, refer to the AD75CK-type Cable Clamping Instruction Manual <IB-68682>.)

5.2 External Interface

The following shows the schematic diagram of the internal circuit of the interface for external device connection of the QD72P3C3.

*: Common terminal is available to both positive common and negative common (COM).

6. SETTING FROM GX Developer

Pulse I/O mode, the logic of external I/O signal, and counter format can be set to the QD72P3C3 with intelligent function module switch setting of GX Developer.
Make the switch setting on the "I/O assignment" tab in QCPU's PLC parameter of GX Developer.
The switch has five switches and is set at 16-bit data.

The settings with the switches are enabled after power-ON or resetting the programmable controller CPU. The settings cannot be changed during operation.

Switch No.	Setting item	Setting contents/bit assignment	Factory default value
Switch 1	Pulse output mode(For details, refer to Section 2.2(2)-(a).	b15 b14 to b12b11- b10 to b8 b7 b6 to b4 b3 b2 to b0 1) Pulse output mode (b2: Axis No.3, b1: Axis No.2, b0: Axis No.1) 0 : CW/CCW mode 1: PULSE/SIGN mode 2) Pulse output logic selection (b6: Axis No.3, b5: Axis No.2, b4: Axis No.1) 0 : Negative logic 1: Positive logic	0000_{H}
	Pulse output logic selection		
	Deviation counter clear output logic selection	3) Deviation counter clear output logic selection (b10: Axis No.3, b9: Axis No.2, b8: Axis No.1) 0 : Negative logic 1: Positive logic 4) Zero signal input logic selection (b14: Axis No.3, b13: Axis No.2, b12: Axis No.1) 0 : Negative logic 1: Positive logic	
	Zero signal input logic selection		

7. EXTERNAL DIMENSIONS

Unit: mm (inch)

Warranty

Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi; machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage, accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other than Mitsubishi products; and to other duties.

For safe use

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi.
- This product has been manufactured under strict quality control. However, when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Country/Region Sales office/Tel		Country/Region Sales office/Tel	
U.S.A	Mitsubishi Electric Automation Inc. 500 Corporate Woods Parkway Vernon Hills, IL 60061 Tel: +1 -847-478-2100	Hong Kong	Ryoden Automation Ltd. 10th Floor, Manulife Tower, 169 Electric Road, North Point, HongKong Tel : +852-2887-8870
Brazil	MELCO-TEC Rep. Com.e Assessoria Tecnica Ltda. Rua Correia Dias, 184, Edificio Paraiso Trade Center-8 andar Paraiso, Sao Paulo, SP Brazil	China	Ryoden Automation Shanghai Ltd. 3F Block5 Building Automation Instrumentation Plaza 103 Cao Bao Rd. Shanghai 200233 China Tel : +86-21-6120-0808
	Tel : +55-11-5908-8331	Taiwan	Setsuyo Enterprise Co., Ltd. 6F., No. 105 Wu-Kung 3rd.RD, Wu-Ku Hsiang, Taipei Hsine, Taiwan
Germany	Mitsubishi Electric Europe B.V. German Branch		
	Gothaer Strasse 8 D-40880 Ratingen, GERMANY Tel : +49-2102-486-0	Korea	Tel : +886-2-2299-2499 HAN NEUNG TECHNO CO.,LTD. 1F Dong Seo Game Channel Bldg.,
U.K	Mitsubishi Electric Europe B.V. UK Branch		660-11, Deungchon-dong Kangsec-ku, Seoul, Korea Tel : +82-2-3660-9552
	$\begin{aligned} & \text { 8XB,UK } \\ & \text { Tel : +44-1707-276100 } \end{aligned}$	Singapore	Mitsubishi Electric Asia Pte, Ltd. 307 Alexandra Road \#05-01/02,
Italy	Mitsubishi Electric Europe B.V. Italian Branch Centro Dir. Colleoni, Pal. Perseo-Ingr. 2		Mitsubishi Electric Building Singapore 159943 Tel : +65-6473-2308
	Via Paracelso 12, 20041 Agrate B., Milano, Italy Tel : + 39-039-6053344	Thailand	F. A. Tech Co.,Ltd. 898/28,29,30 S.V.City Building,Office Tower 2, Floor 17-18 Rama 3 Road,
Spain	Mitsubishi Electric Europe B.V. Spanish Branch		Bangkpongpang, Yannawa, Bangkok 10120 Tel : +66-2-682-6522
	Carretera de Rubi 76-80 08190 Sant Cugat del Valles, Barcelona, Spain Tel : +34-93-565-3131	Indonesia	P.T. Autoteknindo SUMBER MAKMUR JI. Muara Karang Selatan Block a Utara No. 1 Kav. No. 11 Kawasan Industri/
France	Mitsubishi Electric Europe B.V. French		Pergudangan Jakarta - Utara 14440 Tel : +62-21-663-0833
	Branch 25 Boulevard des Bouvets, F-92741 Nanterre Cedex, France TEL: +33-1-5568-5568	India	Messung Systems Put,Ltd. Electronic Sadan NO:111 Unit No15, M.I.D.C BHOSARI,PUNE-411026, India Tel: +91-20-712-2807
South Africa	Circuit Breaker Industries LTD. Tripswitch Drive, Elandsfontein Gauteng, South Africa Tel : +27-11-928-2000	Australia	Mitsubishi Electric Australia Pty. Ltd. 348 Victoria Road, PostalBag, No 2, Rydalmere, N.S.W 2116, Australia Tel : +61-2-9684-7777

\&MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : 1-8-12, OFFICE TOWER Z 14F HARUMI CHUO-KU 104-6212, JAPAN
NAGOYA WORKS : $1-14$, YADA-MINAMI 5 -CHOME, HIGASHI-KU, NAGOYA, JAPAN

[^0] of Economy, Trade and Industry for service transaction permission.

[^0]: When exported from Japan, this manual does not require application to the Ministry

