MITSUBISHI

MOTION CONTROLLER (SV13/22)
 (REAL MODE)

Programming Manual

type A173UHCPU, A273UHCPU

INTORODUCTION

Thank you for purchasing the Mitsubishi Motion Controller/Personal Machine Controller. This instruction manual describes the handling and precautions of this unit. Incorrect handing will lead to unforeseen events, so we ask that you please read this manual thoroughly and use the unit correctly.
Please make sure that this manual is delivered to the final user of the unit and that it is stored for future reference.

Precautions for Safety

Please read this instruction manual and enclosed documents before starting installation, operation, maintenance or inspections to ensure correct usage. Thoroughly understand the machine, safety information and precautions before starting operation.
The safety precautions are ranked as "Warning" and "Caution" in this instruction manual.

WARNING

CAUTION

When a dangerous situation may occur if handling is mistaken leading to fatal or major injuries.

When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as cautions may lead to major results depending on the situation. In any case, important information that must be observed is described.

For Sate Operations

1. Prevention of electric shocks

WARNING

44 Never open the front case or terminal covers while the power is ON or the unit is running, as this may lead to electric shocks.
4 4 Never run the unit with the front case or terminal cover removed. The high voltage terminal and charged sections will be exposed and may lead to electric shocks.
(4) Never open the front case or terminal cover at times other than wiring work or periodic inspections even if the power is OFF. The insides of the control unit and servo amplifier are charged and may lead to electric shocks.
4 When performing wiring work or inspections, turn the power OFF, wait at least ten minutes, and then check the voltage with a tester, etc. Failing to do so may lead to electric shocks.
4 Always ground the control unit, servo amplifier and servomotor with Class 3 grounding. Do not ground commonly with other devices.
④ The wiring work and inspections must be done by a qualified technician.
4) Wire the units after installing the control unit, servo amplifier and servomotor. Failing to do so may lead to electric shocks or damage.
4 4 Never operate the switches with wet hands, as this may lead to electric shocks.
4 Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to electric shocks.
4 4 Do not touch the control unit, servo amplifier or servomotor terminal blocks while the power is ON , as this may lead to electric shocks.
(4) Do not touch the internal power supply, internal grounding or signal wires of the control unit and servo amplifier, as this may lead to electric shocks.

2. For fire prevention

CAUTION

Install the control unit, servo amplifier, servomotor and regenerative resistor on inflammable material. Direct installation on flammable material or near flammable material may lead to fires.
If a fault occurs in the control unit or servo amplifier, shut the power OFF at the servo amplifier's power source. If a large current continues to flow, fires may occur.
When using a regenerative resistor, shut the power OFF with an error signal. The regenerative resistor may abnormally overheat due to a fault in the regenerative transistor, etc., and may lead to fires.
Always take heat measures such as flame proofing for the inside of the control panel where the servo amplifier or regenerative resistor is installed and for the wires used. Failing to do so may lead to fires.

3. For injury prevention

CAUTION

Do not apply a voltage other than that specified in user's manual, or the instruction manual for the product you are using on any terminal. Doing so may lead to destruction or damage.
A. Do not mistake the terminal connections, as this may lead to destruction or damage.

D Do not mistake the polarity (+/-), as this may lead to destruction or damage.
The servo amplifier's heat radiating fins, regenerative resistor and servo amplifier, etc., will be hot while the power is ON and for a short time after the power is turned OFF. Do not touch these parts as doing so may lead to burns.
Always turn the power OFF before touching the servomotor shaft or coupled machines, as these parts may lead to injuries.
. Do not go near the machine during test operations or during operations such as teaching. Doing so may lead to injuries.

4. Various precautions

Strictly observe the following precautions.
Mistaken handling of the unit may lead to faults, injuries or electric shocks.

(1) System structure

CAUTION

Always install a leakage breaker on the control unit and servo amplifier power source.
. If installation of a magnetic contactor for power shut off during an error, etc., is specified in the instruction manual for the servo amplifier, etc., always install the magnetic contactor.
. Install an external emergency stop circuit so that the operation can be stopped immediately and the power shut off.
〔. Use the control unit, servo amplifier, servomotor and regenerative resistor with the combinations listed in the instruction manual. Other combinations may lead to fires or faults.
\. If safety standards (ex., robot safety rules, etc.,) apply to the system using the control unit, servo amplifier and servomotor, make sure that the safety standards are satisfied.
. If the operation during a control unit or servo amplifier error and the safety direction operation of the control unit differ, construct a countermeasure circuit externally of the control unit and servo amplifier.
4. In systems where coasting of the servomotor will be a problem during emergency stop, servo OFF or when the power is shut OFF, use dynamic brakes.
4. Make sure that the system considers the coasting amount even when using dynamic brakes.
. In systems where perpendicular shaft dropping may be a problem during emergency stop, servo OFF or when the power is shut OFF, use both dynamic brakes and magnetic brakes.
§. The dynamic brakes must be used only during emergency stop and errors where servo OFF occurs. These brakes must not be used for normal braking.
. The brakes (magnetic brakes) assembled into the servomotor are for holding applications, and must not be used for normal braking.
4. Construct the system so that there is a mechanical allowance allowing stopping even if the stroke end limit switch is passed through at the max. speed.

CAUTION

4. Use wires and cables that have a wire diameter, heat resistance and bending resistance compatible with the system.
5. Use wires and cables within the length of the range described in the instruction manual.
6. The ratings and characteristics of the system parts (other than control unit, servo amplifier, servomotor) must be compatible with the control unit, servo amplifier and servomotor.
7. Install a cover on the shaft so that the rotary parts of the servomotor are not touched during operation.
@ There may be some cases where holding by the magnetic brakes is not possible due to the life or mechanical structure (when the ball screw and servomotor are connected with a timing belt, etc.). Install a stopping device to ensure safety on the machine side.

(2) Parameter settings and programming

Set the parameter values to those that are compatible with the control unit, servo amplifier, servomotor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
\. The regenerative resistor model and capacity parameters must be set to values that conform to the operation mode, servo amplifier and servo power unit. The protective functions may not function if the settings are incorrect.
〔. Set the mechanical brake output and dynamic brake output validity parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
4. Set the stroke limit input validity parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
\. Set the servomotor encoder type (increment, absolute position type, etc.) parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
\. Set the servomotor capacity and type (standard, low-inertia, flat, etc.) parameter to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
. Set the servo amplifier capacity and type parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
Use the program commands for the program with the conditions specified in the instruction manual.
4. Set the sequence function program capacity setting, device capacity, latch validity range, I/O assignment setting, and validity of continuous operation during error detection to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
. Some devices used in the program have fixed applications, so use these with the conditions specified in the instruction manual.
\$ The input devices and data registers assigned to the link will hold the data previous to when communication is terminated by an error, etc. Thus, an error correspondence interlock program specified in the instruction manual must be used.
【. Use the interlock program specified in the special function unit's instruction manual for the program corresponding to the special function unit.

(3) Transportation and installation

CAUTION

Transport the product with the correct method according to the weight.
Use the servomotor suspension bolts only for the transportation of the servomotor. Do not transport the servomotor with machine installed on it.
. Do not stack products past the limit.
4. When transporting the control unit or servo amplifier, never hold the connected wires or cables.
\. When transporting the servomotor, never hold the cables, shaft or detector.
. When transporting the control unit or servo amplifier, never hold the front case as it may fall off.
. When transporting, installing or removing the control unit or servo amplifier, never hold the edges.
\. Install the unit according to user's manual, or the instruction manual for the product you are using in a place where the weight can be withstood.
. Do not get on or place heavy objects on the product.
\. Always observe the installation direction.
\ Keep the designated clearance between the control unit or servo amplifier and control panel inner surface or the control unit and servo amplifier, control unit or servo amplifier and other devices.
4. Do not install or operate control units, servo amplifiers or servomotors that are damaged or that have missing parts.
4. Do not block the intake/outtake ports of the servomotor with cooling fan.
\. Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil enter the control unit, servo amplifier or servomotor.
. The control unit, servo amplifier and servomotor are precision machines, so do not drop or apply strong impacts on them.
4. Securely fix the control unit and servo amplifier to the machine according to the instruction manual. If the fixing is insufficient, these may come off during operation.
4. Always install the servomotor with reduction gears in the designated direction. Failing to do so may lead to oil leaks.
\. Store and use the unit in the following environmental conditions.

Environment	Conditions	
	Control unit/servo amplifier	Servomotor
Ambient temperature	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (With no freezing)	$0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C}$ (With no freezing)
Ambient humidity	According to each instruction manual.	80% RH or less (With no dew condensation)
Storage temperature	According to each instruction manual.	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Atmosphere	Indoors (where not subject to direct sunlight). No corrosive gases, flammable gases, oil mist or dust must exist.	
Altitude	1000 m or less above sea level.	
Vibration	According to each instruction manual.	

CAUTION

When coupling with the synchronization encoder or servomotor shaft end，do not apply impact such as by hitting with a hammer．Doing so may lead to detector damage．
．Do not apply a load larger than the tolerable load onto the servomotor shaft．Doing so may lead to shaft breakage．
\＄When not using the unit for a long time，disconnect the power line from the control unit or servo amplifier．
．Place the control unit and servo amplifier in static electricity preventing vinyl bags and store．
\．When storing for a long time，contact the Service Center or Service Station．

（4）Wiring

CAUTION

Correctly and securely wire the wires．Reconfirm the connections for mistakes and the terminal screws for tightness after wiring．Failing to do so may lead to run away of the servomotor．
．After wiring，install the protective covers such as the terminal covers to the original positions．
〔．Do not install a phase advancing capacitor，surge absorber or radio noise filter（option FR－ BIF）on the output side of the servo amplifier．
\．Correctly connect the output side（terminals U，V，W）．Incorrect connections will lead the servomotor to operate abnormally．
【．Do not connect a commercial power supply to the servomotor，as this may lead to trouble．
4．Do not mistake the direction of the surge absorbing diode installed on the DC relay for the control signal output of brake signals，etc．Incorrect installation may lead to signals not being output when trouble occurs or the protective functions not functioning．
\．Do not connect or disconnect the connection cables between each unit，the encoder cable or sequence ex－ pansion cable while the power is ON ．
\．Securely tighten the cable connector fixing screws and fixing mechanisms．Insufficient fixing may lead to the cables combing off during operation．
．Do not bundle the power line or cables．

（5）Trial operation and adjustment

CAUTION

Confirm and adjust the program and each parameter before operation．Unpredictable movements may occur depending on the machine．
〔．Extreme adjustments and changes may lead to unstable operation，so never make them．
【．When using the absolute position system function，on starting up，and when the controller or absolute value motor has been replaced，always perform a home position return．

(6) Usage methods

! CAUTION	
〔 Immediately turn OFF the power if smoke, abnormal sounds or odors are emitted from the control unit, servo amplifier or servomotor.	
〔. Always execute a test operation before starting actual operations after the program or parameters have been changed or after maintenance and inspection.	
¢ The units must be disassembled and repaired by a qualified technician.	
\triangle Do not make any modifications to the unit.	
4. Keep the effect or magnetic obstacles to a minimum by installing a noise filter or by using wire shields, etc. Magnetic obstacles may affect the electronic devices used near the control unit or servo amplifier.	
. Use the units with the following conditions.	
Item	Conditions
Input power	According to the separate instruction manual.
Input frequency	According to the separate instruction manual.
Tolerable momentary power failure	According to the separate instruction manual.

(7) Remedies for errors

CAUTION

If an error occurs in the self diagnosis of the control unit or servo amplifier, confirm the check details according to the instruction manual, and restore the operation.
4. If a dangerous state is predicted in case of a power failure or product failure, use a servomotor with magnetic brakes or install a brake mechanism externally.
. Use a double circuit construction so that the magnetic brake operation circuit can be operated by emergency stop signals set externally.
4. If an error occurs, remove the cause, secure the safety and then resume operation.
. The unit may suddenly resume operation after a power failure is restored, so do not go near the machine. (Design the machine so that personal safety can be ensured even if the machine restarts suddenly.)
(8) Maintenance, inspection and part replacement

CAUTION

Perform the daily and periodic inspections according to the instruction manual.
. Perform maintenance and inspection after backing up the program and parameters for the control unit and servo amplifier.
4. Do not place fingers or hands in the clearance when opening or closing any opening.
4. Periodically replace consumable parts such as batteries according to user's manual, or the instruction manual for the product you are using.

CAUTION

4. Do not touch the lead sections such as ICs or the connector contacts.
5. Do not place the control unit or servo amplifier on metal that may cause a power leakage or wood, plastic or vinyl that may cause static electricity buildup.
. Do not perform a megger test (insulation resistance measurement) during inspection.
\$ When replacing the control unit or servo amplifier, always set the new unit settings correctly.
\. When the controller or absolute value motor has been replaced, carry out a home position return operation using one of the following methods, otherwise position displacement could occur.
1) After writing the servo data to the PC using peripheral device software, switch on the power again, then perform a home position return operation.
2) Using the backup function of the peripheral device software, load the data backed up before replacement.
. After maintenance and inspections are completed, confirm that the position detection of the absolute position detector function is correct.
〔. Do not short circuit, charge, overheat, incinerate or disassemble the batteries.
4. The electrolytic capacitor will generate gas during a fault, so do not place your face near the control unit or servo amplifier.
\ The electrolytic capacitor and fan will deteriorate. Periodically change these to prevent secondary damage from faults. Replacements can be made by the Service Center or Service Station.
(9) Disposal

CAUTION

Dispose of this unit as general industrial waste.
\. Do not disassemble the control unit, servo amplifier or servomotor parts.
4. Dispose of the battery according to local laws and regulations.

(10) General cautions

CAUTION

All drawings provided in the instruction manual show the state with the covers and safety partitions removed to explain detailed sections. When operating the product, always return the covers and partitions to the designated positions, and operate according to the instruction manual.

Revisions
The manual number is given on the bottom left of the back cover.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

CONTENTS

1. GENERAL DESCRIPTION 1-1 to 1-13
1.1 System Configuration 1-3
1.1.1 A273UHCPU System overall configuration 1-3
1.1.2 A173UHCPU(-S1) System overall configuration 1-4
1.2 Table of Software Package 1-5
1.3 Positioning Control by the Servo System CPU 1-6
2. PERFORMANCE SPECIFICATIONS 2- 1 to 2- 4
2.1 SCPU Performance Specifications 2-1
2.2 PCPU Performance Specifications 2-3
3. POSITIONING SIGNALS 3-1 to 3-54
3.1 Internal Relays 3- 2
3.1.1 Axis status 3-7
3.1.2 Axis command signals 3-16
3.1.3 Common Device 3-22
3.2 Data Registers 3-33
3.2.1 Monitoring data area 3-36
3.2.2 Control change registers 3-41
3.2.3 Common devices 3-42
3.3 Special Relays (SP.M) 3-48
3.4 Special Register (SP.D) 3-51
4. PARAMETERS FOR POSITIONING CONTROL 4-1 to 4-25
4.1 System Settings 4-1
4.2 Fixed Parameters 4- 2
4.2.1 Setting the number of pulses per revolution / travel value per revolution / unit magnification 4-3
4.2.2 Upper stroke limit value/lower stroke limit value 4-5
4.2.3 Command in-position range 4-6
4.3 Servo Parameters 4-6
4.3.1 Servo parameters of ADU (only when A273UHCPU is used) 4-7
4.3.2 MR- \square-B servo parameters 4-9
4.3.3 Position control gain 1, 2 4-14
4.3.4 Position control gain 1, 2 4-15
4.3.5 Speed integral compensation 4-15
4.3.6 In-position range 4-16
4.3.7 Feed forward gain 4-16
4.3.8 Load inertia ratio 4-16
4.3.9 Automatic tuning 4-16
4.3.10 Servo responsiveness setting 4-17
4.3.11 Notch filter 4-18
4.3.12 Electromagnetic brake sequence 4-18
4.3.13 Monitor output mode. 4-18
4.3.14 Optional function 1 (carrier frequency selection) 4-18
4.3.15 Optional function 2 (no-motor operation selection) 4-19
4.3.16 Monitor output 1, 2 offset 4-20
4.3.17 Pre-alarm data selection. 4-20
4.3.18 Zero speed 4-21
4.3.19 Excessive error alarm level 4-21
4.3.20 Optional function 5. 4-21
4.3.21 PI-PID switching position droop 4-21
4.3.22 Torque control compensation factor 4-21
4.3.23 Speed differential compensation 4-21
4.4 Parameter Block. 4-22
4.4.1 Relationships among the speed limit value, acceleration time, deceleration time, and rapid stop deceleration time 4-24
4.4.2 S-curve ratio 4-24
4.4.3 Allowable error range for circular interpolation 4-25
5. SEQUENCE PROGRAMS AND SFC PROGRAMS 5-1 to 5-20
5.1 Cautions on Creating a Sequence Program or SFC Program 5-1
5.2 Servo Program Start Request Instruction (SVST) 5-2
5.2.1 Start request instruction for 1 to 32 axes (SVST) 5-2
5.3 Current Value Change Instructions (CHGA) 5-5
5.3.1 CHGA instructions 5-5
5.4 Speed Change Instructions (CHGV) 5-8
5.4.1 CHGV instructions 5-8
5.5 Retracing during Positioning 5-11
5.6 Torque Limit Value Change Request (CHGT) 5-14
5.6.1 CHGT instructions 5-14
5.7 SFC Programs 5-16
5.7.1 Starting and stopping SFC programs 5-16
5.7.2 Servo program start request 5-17
6. SERVO PROGRAMS FOR POSITIONING CONTROL 6-1 to 6-17
6.1 Servo Program Composition and Area 6-1
6.1.1 Servo program composition 6-1
6.1.2 Servo program area. 6-2
6.2 Servo Instructions 6-3
6.3 Positioning Data 6-9
6.4 Method for Setting Positioning Data 6-13
6.4.1 Setting by designating numerical values 6-13
6.4.2 Setting by using word devices (D, W) 6-14
6.5 Creating Sequence Programs to Start Servo Programs 6-15
6.5.1 Case where the servo program is executed once only... 6-15
6.5.2 Case where different servo programs are executed consecutively 6-16
6.5.3 Case where the same servo program is executed repeatedly 6-17
7. POSITIONING CONTROL 7-1 to 7-150
7.1 Basics of Positioning Control 7-1
7.1.1 Positioning speed 7-1
7.1.2 Positioning speed under interpolation control 7-2
7.1.3 Control units for 1-axis positioning control 7-7
7.1.4 Control units for interpolation control 7-7
7.1.5 Control using degrees as control units 7-9
7.1.6 Stop processing and restarting after a stop 7-11
7.1.7 Acceleration and deceleration processing. 7-17
7.2 1-Axis Linear Positioning Control 7-19
7.3 2-Axes Linear Interpolation Control 7-23
7.4 3-Axes Linear Interpolation Control 7-27
7.5 4-Axes Linear Interpolation Control. 7-32
7.6 Circular Interpolation Using Auxiliary Point Designation 7-36
7.7 Circular Interpolation Using Radius Designation 7-40
7.8 Circular Interpolation Using Center Point Designation 7-46
7.9 1-Axis Fixed-Pitch Feed Control 7-51
7.10 Fixed-Pitch Feed Control Using 2-Axes Linear Interpolation 7-54
7.11 Fixed-Pitch Feed Control Using 3-Axes Linear Interpolation 7-57
7.12 Speed Control (I) 7-60
7.13 Speed Control (II) 7-64
7.14 Speed/Position Switching Control 7-67
7.14.1 Starting speed/position switching control 7-67
7.14.2 Restarting speed/position switching control 7-75
7.15 Speed-Switching Control 7-80
7.15.1 Starting speed-switching control, speed-switching points, end designation 7-80
7.15.2 Setting speed-switching points using repeat instructions 7-86
7.16 Constant-Speed Control 7-91
7.16.1 Setting Pass points using Repeated Instructions 7-95
7.16.2 Speed switching during instruction execution. 7-100
7.16.3 1-axis constant-speed control 7-104
7.16.4 2 to 4-axes constant-speed control 7-108
7.16.5 Pass point skip function 7-115
7.16.6 FIN signal wait function 7-117
7.17 Position Follow-Up Control. 7-119
7.18 Simultaneous Start 7-123
7.19 JOG Operation 7-126
7.19.1 JOG operation data 7-126
7.19.2 Individual start 7-127
7.19.3 Simultaneous start. 7-131
7.20 Manual Pulse Generator Operation 7-134
7.21 Home Position Return 7-141
7.21.1 Zeroing data 7-141
7.21.2 Zeroing by the proximity dog method 7-143
7.21.3 Zeroing by the count method 7-145
7.21.4 Zeroing by the data set method 7-146
7.21.5 Zeroing servo program 7-147
7.22 High-Speed Oscillation. 7-149
8. AUXILIARY AND APPLIED FUNCTIONS 8-1 to 8-20
8.1 Limit Switch Output Function 8- 2
8.1.1 Limit switch output data 8-2
8.1.2 Limit switch output function 8-2
8.2 M-Code Output Function 8-4
8.3 Backlash Compensation Function 8-6
8.4 Torque Limit Function 8-8
8.5 Electronic Gear Function 8-10
8.6 Absolute Positioning System 8-12
8.7 Skip Function 8-15
8.8 Teaching Function. 8-16
8.9 High-Speed Reading of Designated Data 8-16
8.10 Servo Program Cancel/Start Function 8-17
8.11 Enhanced Current Value Control 8-19
APPENDICES APP- 1 to APP-71
APPENDIX1 SCPU ERROR CODE LIST APP- 1
1.1 SCPU Error Code List APP- 1
APPENDIX2 ERROR CODES STORED BY THE PCPU APP- 5
2.1 Servo Program Setting Errors (Stored in D9190) APP- 7
2.2 Minor Errors APP-10
2.3 Major Errors APP-17
2.4 Servo Errors APP-21
2.5 PC Link Communication Errors APP-35
2.6 LED Indications when Errors Occur at the PCPU APP-36
APPENDIX3 SPECIAL RELAYS AND SPECIAL REGISTERS APP-38
3.1 Special Relays (SP, M) APP-38
3.2 Special Registers (SP.D) APP-43
APPENDIX4 EXAMPLE PROGRAMS APP-53
4.1 Reading M-Codes APP-53
4.2 Error Code Reading APP-54
4.3 Magnitude Comparison and Four Fundamental Operations of 32-Bit Monitor Data APP-55
APPENDIX 5 SETTING RANGE OF INDIRECTLY DESIGNATED DEVICES APP-57
APPENDIX 6 PROCESSING TIMES APP-59
APPENDIX 7 ELECTRONIC GEAR SETTING EXAMPLES APP-68

1. GENERAL DESCRIPTION

1. GENERAL DESCRIPTION

This manual describes the positioning control parameters required to execute positioning control with the motion controller (SV13/22 real mode), the devices used specifically for positioning, and the method used for positioning. The positioning control capabilities of the motion controller (SV13/22 real mode) are indicated in the table below.

Applicable CPU	Number of Axes Controlled in Positioning Control
A173UHCPU(-S1)	32
A273UHCPU	32

In this manual, the CPUs cited in the table above are collectively referred to as "servo system CPUs".
The following software packages are used to make system settings, and to set, test, and monitor parameters and servo programs.

- SW2SRX-GSV13PE software package \qquad Abbreviated to "GSV13PE"
- SW2SRX-GSV22PE software package

Abbreviated to "GSV22PE"

CAUTION

When designing the system, provide external protective and safety circuits to ensure safety in the event of trouble with the motion controller.
\$. There are electronic components which are susceptible to the effects of static electricity mounted on the printed circuit board. When handling printed circuit boards with bare hands you must ground your body or the work bench.
Do not touch current-carrying or electric parts of the equipment with bare hands.
〔. Make parameter settings within the ranges stated in this manual.
4. Use the program instructions that are used in programs in accordance with the conditions stipulated in this manual.
. Some devices for use in programs have fixed applications: they must be used in accordance with the conditions stipulated in this manual.

REMARK
(1) Abbreviations used in this manual are shown in the following table.

Names	Abbreviation
IBM PC/AT in which PC-DOS V5.0 or later version is installed	IBM PC
MR-H-BN/MR-J2S-B/MR-J2-B type servo amplifier	MR-D-B
AC motor drive module	ADU

IBM PC/AT is a register trade mark of the International Business Machines Corporation.

1. GENERAL DESCRIPTION

Differences between A273UHCPU, A173UHCPU(-S1) and A172SHCPUN

	Item			A173UHCPU(-S1)			A172SHCPUN		A273UHCPU				
	Number of control axes			32-axes			8-axes		32-axes				
	Operation cycle			SV $3.5 \mathrm{~ms} / 1$ to 20 axes 13 $7.1 \mathrm{~ms} / 21$ to 32 axes			$3.5 \mathrm{~ms} / 1$ to 8 axes		SV	$3.5 \mathrm{~ms} / 1$ to 12 axes $7.1 \mathrm{~ms} / 13$ to 24 axes $14.2 \mathrm{~ms} / 25$ to 32 axes			
				SV	$\begin{aligned} & 3.5 \mathrm{~ms} / 1 \mathrm{tc} \\ & 7.1 \mathrm{~ms} / 13 \\ & 14.2 \mathrm{~ms} / 25 \end{aligned}$	o 12 axes to 24 axes 5 to 32 axes			SV	$3.5 \mathrm{~ms} / 1$ to 8 axes $7.1 \mathrm{~ms} / 9$ to 18 axes $14.2 \mathrm{~ms} / 19$ to 32 axes			
	Cam data			A173UHCPU Max. 64 pcs.			Max. 64 pcs.		Max. 256 pcs.				
				A173UHCPU Max. 256 pcs. S1									
\bar{Z} 0	PLC CPU			A3UCPU equivalent			A2SHCPU (memory enhanced) equivalent		A3UCPU equivalent				
	Processing speed ($\mu \mathrm{s} /$ step)			0.15			Direct	0.25 to 1.9	0.15				
				Refresh	0.25								
	Number of real I/O points						2048 points(Range of one extension base)			1024 points		2048 points	
	Number of I/O device points			8192 points			2048 points		8192 points				
	Memory capacity			256k bytes (for A173UHCPU) 1024k bytes (for A173UHCPU-S1)			192k bytes		Varies with memory cassette				
	Program capacity		Main sequence	30k steps			30k steps		30k steps				
			Sub sequence	30k steps			None		30k steps				
		Internal relay (M)		8192 points			2048 points		8192 points				
		Link relay (B)		8192 points			1024 points		8192 points				
		Timer (T)		2048 points			256 points		2048 points				
		Data register (D)		8192 points			1024 points		8192 points				
		Link register (W)		8192 points			1024 points		8192 points				
		Annunciator (F)		2048 points			256 points		2048 points				
		Index register (V, Z)		14 points			2 points		14 points				
	Number of PLC extension bases			1 base			1 base		7 bases				
	Number of SSCNET interfaces			4 channels			2 channels		4 channels				
	Number of motion slots			$\begin{gathered} 8 \text { slots } \\ \text { (A178B-S3 use) } \end{gathered}$			$\begin{gathered} 2 \text { slots } \\ \text { (A178B-S1 use) } \end{gathered}$		8 slots \times up to 4 extension bases allowed				
	Pulse generator/synchronous encoder, external signal input modules			Four A172SENC modules usable			One A172SENC module usable		Four A287EX/A273EX usable				
	PBUS I/O module			256 points			256 points		256 points				
	Manual pulse generator			3 pcs. usable			1 pc. usable		3 pcs. usable				
	Synchronous encoder (SV22)			4 pcs. usable			1 pc. usable		12 pcs. usable				
	High-speed read		NMI input	1 point			1 point		3 points				
			PLC input module	8 points			8 points		8 points				
$\begin{aligned} & \text { Z } \\ & \text { 言 } \\ & \text { 产 } \\ & \text { D } \\ & \bar{E} \\ & 0 \end{aligned}$	Sequence program/parameters			Those started on A173UHCPU and created on A273UHCPU (32-axes feature) by file read can be used as is.									
	Servo	program											
	Mech	anical system	program (SV22)					-					
	Cam data (SV22P)												
	System settings			Must be set anew.					\square				
	Parameters												

1. GENERAL DESCRIPTION

1.1 System Configuration

1.1.1 A273UHCPU System overall configuration

The following system configuration assumes use of the A273UHCPU.

1. GENERAL DESCRIPTION

1.1.2 A173UHCPU(-S1) System overall configuration

POINTS

(1) Use the A168B when using the bus-connection type GOT.
(2) Using the A31TU teaching unit provided with deadman switch requires the exclusively used A31TUCBL03M connection cable between the CPU module and A31TU connector. The A31TU will not operate at all if it is connected directly with the RS422 connector of the CPU, without using the exclusively used cable.
Also, after disconnecting the A31TU, fit the A31SHORTCON short connector designed for A31TUCBL.
(3) The motion slots also accept PLC A1S I/O modules.
(4) The motion slots accept one A1SI61 interrupt input module.

This module is designed for only event/NMI input to the motion CPU and is irrelevant to PLC interrupt programs.
(5) The motion slots accept up to 256 I/O points.
(6) The I/O numbers of the I/O modules loaded in the motion slots should be later than the I/O numbers used with the PLC slots.

1. GENERAL DESCRIPTION

1.2 Table of Software Package

Use	Peripheral Devices		Programming Software Package				Operating System Software Package Model Name		Teaching function
				Model Name	Applicable version				
					For A173UH	For A273UH	A173UH	A273UH	
For conveyor assembly	IBM PC/AT	$\begin{aligned} & \mathrm{NT} / \\ & 98 \end{aligned}$	Japanese	SW3RNC-GSV	From 00F on	Without restriction			
$\binom{\text { With }}{\text { Motion SFC }}$			English	SW3RNC -GSVE	Without restriction	Without restriction	SV13B	SV13X	
For conveyor assembly SV13 $\binom{\text { Without }}{\text { Motion SFC }}$	IBM PC/AT	DOS	Japanese	SW2SRX-GSV13P	From OAC on	-	$\begin{aligned} & \text { SW2SRX- } \\ & \text { SV13B } \end{aligned}$	SWOSRX- SV13V	Yes
			English	SW2SRX-GSV13PE	From 00J on	-			
		$\begin{array}{\|l\|} \mathrm{NT} / \\ 98 \end{array}$	Japanese	SW3RNC-GSV	From 00F on	From 00F on			
			English	SW3RNC-GSVE	Without restriction	-			
For automatic machinery SV22 $\binom{\text { With }}{\text { Motion SFC }}$	IBM PC/AT	$\left\lvert\, \begin{aligned} & \mathrm{NT} / \\ & 98 \end{aligned}\right.$	Japanese	SW3RNC-GSV	From 00F on	Without restriction	W3RN-	SW3RN	
			English	SW3RNC -GSVE	Without restriction	Without restriction	SV22A	SV22W	
For automatic machinery SV22 $\binom{$ Without }{ Motion SFC }	IBM PC/AT	DOS	Japanese	SW2SRX-GSV22P	From 0AC on	-	$\begin{aligned} & \text { SW2SRX- } \\ & \text { SV22A } \end{aligned}$	SWOSRX- SV22C	No
				SW0SRX-CAMP	From 00B on	-			
				SW2SRX-GSV22PE	From 00J on	-			
			English	SWOSRX-CAMPE	Without restriction	-			
		$\begin{aligned} & \text { NT/ } \\ & 98 \end{aligned}$	Japanese	SW3RNC-GSV	From 00F on	From 00F on			
			English	SW3RNC-GSVE	Without restriction	-			

(1) Software package versions which accept the setting of the MR-J2S-B servo amplifier
For the following combinations of the programming software packages and operating system software packages, the MR-J2S-B servo amplifier is made usable by setting the servo amplifier to the "MR-J2S series" and the servo motor to "Auto" in the programming software package system settings.

Programming Software Package		Operating System Software Package			
Model	Version	A273UHCPU	Version	A173UHCPU(-S1)	Version
SW2SRX-GSV13P	AD or later	SW2SRX SV13V	AF or later	SW2SRX SV13B	AF or later
SW2SRX-GSV13PE	J or later	SW2SRX-SV13	AF or later	SW2SRX-SV13B	AF or later
SW2NX-GSV13P	AC or later	SW2NX-SV13V	AF or later	SW2NX-SV13B	AF or later
SW2SRX-GSV22P	AD or later	SW2SRX-SV22U	AF or later	SW2SRX-SV22A	AF or lat
SW2SRX-GSV22PE	J or later	SW2SRX-SV22	AF or later	SW2SRX-SV22A	AF or later
SW2NX-GSV22P	AC or later	SW2NX-SV22U	AF or later	SW2NX-SV22A	AF or later
SW3RNC-GSV	G or later	SW2SRX-SV13V	AF or later	SW2SRX-SV13B	AF or later
SW3RNC-GSVE		SW2SRX-SV22U		SW2SRX-SV22A	

1. GENERAL DESCRIPTION

1.3 Positioning Control by the Servo System CPU

A servo system CPU can execute positioning control and sequence control for 32 axes by means of a CPU for multi-axis positioning control (hereafter called the "PCPU") and a CPU for sequence control (hereafter called the "SCPU"). Sequence control capabilities are equivalent to those of A3U.
(1) Control handled by the SCPU
(a) Sequence control

The SCPU controls I/O modules and special function modules in accordance with the sequence program.
(The method for executing a sequence program is the same as for an A3UCPU.)
(b) Start of positioning start in accordance with sequence program, and setting of positioning data

1) The Start requests execution of servo programs by means of the SVST instruction (up to 4 axes for interpolation).
2) It changes current values or speed by means of the CHGA/CHGV instruction.
3) It changes the torque limit value by means of the CHGT instruction.
4) It executes JOG operation.
5) It sets the data required to execute manual pulse generator operation.
(2) Control handled by the PCPU
(a) The PCPU executes servo programs whose execution is requested by a SVST instruction issued by the sequence program, and performs the set positioning control.
Positioning control data is defined in the positioning control parameters and the servo program.
(b) It changes the feed current value or positioning speed at the servo side in accordance with the current values or speeds set by CHGA/CHGV instructions issued by the sequence program.
(c) It changes the torque limit value of the designated axis to that defined by the CHGT instruction.
(d) It executes positioning when the manual pulse generator is used.
(e) It executes the teaching designated with the teaching unit (A30TU-E/A31TU-E).

1. GENERAL DESCRIPTION

[Executing Positioning Control with a Servo System CPU]

The servo system CPU executes positioning control in accordance with the servo programs designated by the sequence program of the SCPU.
An overview of the method used for positioning control is presented below.

Servo System CPU System

(1) Servo programs and positioning control parameters are set using a peripheral device.
(2) Positioning is started by the sequence program (SVST instruction).
(a) The servo program number and controlled axis number are designated by the SVST instruction.

1) The servo program number can be set either directly or indirectly.
2) The controlled axis number can only be set directly.

1. GENERAL DESCRIPTION

(3) The positioning specified by the designated servo program is executed.

1. GENERAL DESCRIPTION

[Executing JOG Operation with a Servo System CPU]

The servo system CPU can be used to perform JOG operation on a designated axis in accordance with a sequence program.
An overview of JOG operation is presented below.
Servo System CPU System

(1) Set the positioning control parameters using a peripheral device.
(2) Using the sequence program, set the JOG speed in the JOG operation speed setting register for each axis.
(3) JOG operation is executed while the JOG operation execution flag is kept ON by the sequence program.

1. GENERAL DESCRIPTION

REMARK

(Note-1): Any of the following peripheral devices, running the SW2SRX-GSV13PE/SW2SRX-GSV22PE software, can be used.

- IBM PC

1. GENERAL DESCRIPTION

[Executing Manual Pulse Generator Operation with a Servo System CPU]

When executing positioning control with a manual pulse generator connected to an A273EX or A172SENC, manual pulse generator operation must be enabled by the sequence program.
An overview of positioning control using manual pulse generator operation is presented below.

Servo System CPU System

SCPU Control

Sequence program

Manual pulse generator used
Operated axis number

Resetting of axis 1 manual pulse generator operation enable flag
[RST M2051]

```
Setting for controlling axis 1 with manual pulse generator P1
1 pulse input magnification setting is 100
Setting of axis 1 manual pulse generator operation enable flag
Manual pulse generator operation completed flag
``` 1 pulse input magnification Manual pulse generator enable

Use the sequence program to turn the manual pulse generator
operation enable flag ON after setting the manual pulse generator
used, operation number, and magnification for 1 pulse input.
(1) Set the manual pulse generator used, operated axis number, and magnification for 1 pulse input by using the sequence program.
(2) Turn the manual pulse generator operation enable flag ON by using the sequence program.

Manual pulse generator operation enabled
(3) Perform positioning by operating the manual pulse generator.
(4) Turn the manual pulse generator operation enable flag OFF by using the sequence program.

Manual pulse generator operation completed

(1) Positioning control parameters

The positioning control parameters are classified into the seven types shown below.
Parameter data can be set and corrected interactively by using a peripheral device.
\begin{tabular}{|c|c|c|c|}
\hline & Item & Description & Reference \\
\hline 1 & System settings & The system settings set the modules used, axis numbers, etc. & Section 4.1 \\
\hline 2 & Fixed parameters & Fixed parameters are set for each axis. Their settings are predetermined by the mechanical system. They are used for servo motor control during positioning control. & Section 4.2 \\
\hline 3 & Servo parameters & Servo parameters are set for each axis. Their settings are predetermined by the type of servomotor connected. They are set to control the servomotors during positioning control. & Section 4.3 \\
\hline 4 & Zeroing data & Zeroing data is set for each axis. The return direction, return method, return speed, etc. are set for zeroing. & Section 7.21 \\
\hline 5 & JOG operation & JOG operation data is set for each axis. The speed limit value and parameter block number are set for JOG operation. & Section 7.19 \\
\hline 6 & Parameter block & Up to 16 parameter blocks are set for acceleration, deceleration, speed control, etc. during positioning control. They are designated by the servo program, JOG operation data, and zeroing data to easily change acceleration and deceleration (acceleration time, deceleration time, and speed limit value) during positioning control. & Section 4.4 \\
\hline 7 & Limit switch output data & Limit switch output data (ON/OFF pattern data) is set for each axis to be used when "USE" is set for the limit switch output setting in the fixed parameter. When positioning control takes place on an axis for which limit switch output data has been set, the set ON/OFF pattern of the axis is output to an external destination. & Section 8.1 \\
\hline
\end{tabular}
(2) Servo program

A servo program is a program for executing positioning control and is run in response to a start request from the sequence program.
It comprises a program number, servo instructions, and positioning data.
For details, see Chapter 6.
- Program No. \(\qquad\) This number is designated in the sequence program.
- Servo instruction \(\qquad\) This instruction indicates the type of positioning control to be executed.
- Positioning data This data is required to execute servo instructions. The data required is fixed for each servo instruction.
(3) Sequence program

The sequence program serves to enable the execution of positioning control by servo programs, JOG operation, and manual pulse generator operation.
For details, see Chapter 5.

\section*{2. PERFORMANCE SPECIFICATIONS}

\section*{2. PERFORMANCE SPECIFICATIONS}

\subsection*{2.1 SCPU Performance Specifications}

Table 2.1 gives the performance specifications of the SCPU.
Table 2.1 SCPU Performance Specifications

\section*{2. PERFORMANCE SPECIFICATIONS}

Table 2.1 SCPU Performance Specifications (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & A273UHCPU & A173UHCPU(-S1) \\
\hline \multirow{9}{*}{\[
\begin{aligned}
& \mathbb{0} \\
& \stackrel{0}{\partial} \\
& \hline 0
\end{aligned}
\]} & Number of data registers (D) (Note-1) & \multicolumn{2}{|c|}{8192 points (D0 to D8191)} \\
\hline & Number of link registers (W) & \multicolumn{2}{|c|}{8192 points (W0 to W1FFF)} \\
\hline & Number of annunciators (F) & \multicolumn{2}{|c|}{2048 points (F0 to F2047)} \\
\hline & Number of file registers (R) & \multicolumn{2}{|l|}{Max. 8192 points (R0 to R8191) (set with parameters)} \\
\hline & Number of accumulators (A) & \multicolumn{2}{|c|}{2 points (A0, A1)} \\
\hline & Number of index registers (V, Z) & \multicolumn{2}{|c|}{14 points (V, V1 to V6, Z, Z1 to Z6)} \\
\hline & Number of pointers (P) & \multicolumn{2}{|c|}{256 points (P0 to P255)} \\
\hline & Number of interrupt pointers (I) & \multicolumn{2}{|c|}{32 points (10 to 131)} \\
\hline & Number of special-function relays (M) & \multicolumn{2}{|c|}{256 points (M9000 to M9255)} \\
\hline Num & ber of special-function registers (D) & \multicolumn{2}{|c|}{256 points (D9000 to D9255)} \\
\hline \multicolumn{2}{|l|}{Number of expansion file register block (Note-2)} & Max. 46 blocks (set by memory capacity) & \begin{tabular}{l|c}
Standard & Max. 10 blocks \\
\hdashline\(-S 1\) & Max. 46 blocks \\
\hline
\end{tabular} \\
\hline Num & er of comments & \multicolumn{2}{|l|}{Max. 4032 (64 k bytes), 1 point = 16 bytes (Set in 64-point unit)} \\
\hline Num & er of expansion comments (Note-3) & \multicolumn{2}{|l|}{Max. 3968 points (63k bytes), 1 point \(=16\) bytes (Set in 64-point unit)} \\
\hline Self & diagnostic function & Watchdog error monitoring, memory/CPU/input/output/battery, etc error detection & Watchdog error monitoring (Watchdog timer fixed to 200ms) \\
\hline Ope & ration mode on error & \multicolumn{2}{|c|}{Select stop/continue} \\
\hline & ut mode selection when switching from STOP to & \multicolumn{2}{|l|}{Select re-output operation status before STOP (default) or output after operation execution.} \\
\hline Cloc & function (Note-4) & \multicolumn{2}{|l|}{Year, month, day, hour, minute, day of the week (leap year automatic distinction)} \\
\hline Prog & ram/parameter storage in ROM & Max. 64 kbytes & Not possible \\
\hline RUN & -time start method & \multicolumn{2}{|c|}{Initial start} \\
\hline Latc & (power failure compensation) range & \multicolumn{2}{|l|}{L1000 to L2047 (default) (Latch range can be set for L, B, T, C, D, W)} \\
\hline Rem & ote run/pause contact & \multicolumn{2}{|l|}{Using X0 to X1FFF, one point can be set for each of the RUN and PAUSE contacts.} \\
\hline I/O & ssignment & \multicolumn{2}{|l|}{Number of occupied I/O points and module type can be registered.} \\
\hline Step & run & \multicolumn{2}{|l|}{Sequence program operation can be executed and stopped.} \\
\hline Inte & upt processing & \multicolumn{2}{|l|}{Using interrupt or fixed-cycle interrupt signal, interrupt program can be executed.} \\
\hline Data & link & \multicolumn{2}{|c|}{MELSECNET/10, MELSECNET II} \\
\hline
\end{tabular}
(Note-1): Range of positioning dedicated devices differs depending on the OS. For details, see Chapter 3.
(Note-2): No. of extension fide register blocks varies depending on the setting of program capacity, No. of file registers, or No. of comments.
(Note-3): The expansion comments are not stored in the internal memory of the CPU.
(Note-4): The year data by the clock element is only the lower two digits of the year.
When used in sequence control, the data must be compensated for the sequence program in some applications of using the data.

\section*{2. PERFORMANCE SPECIFICATIONS}

\subsection*{2.2 PCPU Performance Specifications}

Table 2.2 PCPU Performance Specifications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & \multicolumn{3}{|c|}{A273UHCPU} & \multicolumn{2}{|r|}{A173UHCPU(-S1)} \\
\hline \multicolumn{2}{|l|}{Number of control axes} & \multicolumn{5}{|c|}{32 axes (simultaneous: 2 to 4 axes, independent: 32 axes)} \\
\hline \multicolumn{2}{|l|}{Interpolation functions} & \multicolumn{5}{|c|}{Linear interpolation (max. 4 axes), circular interpolation (2 axes)} \\
\hline \multicolumn{2}{|l|}{Control modes} & \multicolumn{5}{|l|}{PTP(point to point), speed control, speed/position control, fixed-pitch feed, constant-speed control, position follow-up control, speed switching control, high-speed oscillation control} \\
\hline \multicolumn{2}{|l|}{Control units} & \multicolumn{5}{|c|}{\(\mathrm{mm} \bullet\) inch • degree • PULSE} \\
\hline \multicolumn{2}{|l|}{Programming language} & \multicolumn{5}{|l|}{Dedicated instructions (sequence ladders + servo programs) SFC programming of servo programs is also possible.} \\
\hline \multirow[b]{2}{*}{Motion program} & Capacity & \multicolumn{5}{|c|}{14334 steps} \\
\hline & Number of points for positioning & \multicolumn{5}{|l|}{\begin{tabular}{l}
Approx. 100 points/axis \\
(These values vary depending on the programs. Positioning data can be designated indirectly.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Program setting method} & \multicolumn{5}{|l|}{Setting with an IBM PC A30TU-E/A31TU-E (SV13 only), running the GSV \(\square \square P \mathrm{P}\) software} \\
\hline \multirow{13}{*}{Positioning} & Method & \multicolumn{5}{|l|}{\begin{tabular}{ll}
PTP & \begin{tabular}{c}
: Selection of absolute data method or \\
incremental method
\end{tabular} \\
Speed/positioning control, fixed-pitch feed & : Incremental method \\
Constant-speed control, speed switching & : The absolute method and incremental metho \\
control & can be used together \\
Position follow-up control, high-speed & : Absolute data method \\
oscillation control &
\end{tabular}} \\
\hline & \multirow{6}{*}{Position commands} & \multicolumn{5}{|l|}{Commands can be selected for each axis.} \\
\hline & & Control Unit & Command Unit & \multicolumn{2}{|l|}{Address Setting Range} & Travel Value Setting Range \\
\hline & & mm & \(\times 10^{-1} \mu \mathrm{~m}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{-2147483648 to 2147483647}} & \multirow{4}{*}{0 to \(\pm 2147483647\)} \\
\hline & & inch & \(\times 10^{-5}\) inch & & & \\
\hline & & degree & \(\times 10^{-5}\) degree & & to 35999999 & \\
\hline & & PULSE & \(\times 1\) PULSE & -214 & 3648 to 2147483647 & \\
\hline & & Control Unit & & d Se & g range & \\
\hline & & mm & 0.01 to 6000000. & 0 & (mm/min) & \\
\hline & (command unit) & inch & 0.001 to 600000. & 0 & (inch/min) & \\
\hline & & degree & 0.001 to 2147483 & 647 & (degree/min) \({ }^{(\text {Note-1) }}\) & \\
\hline & & PULSE & 1 to 10000000 & - & (PLS/s) \({ }^{\text {(Note-1) }}\) & \\
\hline & High speed oscillation function & One specified axi & can be reciproca & d in & waveform. & \\
\hline Acceleration/ deceleration & Automatic trapezoidal acceleration/ deceleration & \begin{tabular}{l}
Accelerati \\
Acc \\
Dec
\end{tabular} & \begin{tabular}{l}
n-fixed accelerat \\
eleration time: 1 to \\
eleration time: 1 to
\end{tabular} & \[
\begin{aligned}
& \frac{\text { on/de }}{65535} \\
& 65535
\end{aligned}
\] & eration & \\
\hline control & S-curve acceleration/ deceleration & & & urve ra & setting : 0 to 100\% & \\
\hline Compensation & Backlash compensation & (0 to 65535) \(\times\) po & sition command un & (unit & nverted to PULSE : & 65535 PULSE) \\
\hline & Electronic gear & Compensation fu & ction for error in a & tual tr & l value with respect to & ommand value \\
\hline Zeroing functio & & When an absolute When an absolute & position system position system & not u used & \begin{tabular}{l}
: Selection of proxim \\
: Selection of data count type
\end{tabular} & dog type or count type type, proximity dog typ \\
\hline JOG operation & unction & & & & rovided & \\
\hline
\end{tabular}

\section*{2. PERFORMANCE SPECIFICATIONS}

Table 2.2 PCPU Performance Specifications (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & A273UHCPU & A173UHCPU(-S1) \\
\hline \multicolumn{2}{|l|}{Manual pulse generator operation function} & \begin{tabular}{l}
- A maximum of three manual pulse generator can be connected. \\
- A maximum of three manual pulse generators can be operated. \\
- Setting of magnification : 1 to 100 . It is possible to set the smoothing magnification.
\end{tabular} & \begin{tabular}{l}
- A maximum of three manual pulse generator can be connected. \\
- A maximum of three manual pulse generators can be operated. \\
- Setting of magnification : 1 to 100 . It is possible to set the smoothing magnification. \\
- One A172SENC is required per piece.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{M-function} & \multicolumn{2}{|r|}{M-code output function provided} \\
\hline \multicolumn{2}{|l|}{Limit switch output function} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Number of output points 8 point/axis \\
Number of ON/OFF setting points 10 points/axis
\end{tabular}} \\
\hline \multirow[t]{2}{*}{High-speed reading of designated data} & Number of input points & \begin{tabular}{l}
Max. 11 points \\
(TRA input of A273EX (3 points) + one motion slot sequencer input module (8 points))
\end{tabular} & Max. 9 points (TRA input of A172SENC (1 points) + one motion slot sequencer input module (8 points)) \\
\hline & Data latch timing & \multicolumn{2}{|l|}{\begin{tabular}{l}
At leading edge of the TRA input signal \\
Within 0.8 ms of the signal leading edge for the sequencer input module.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Absolute position system} & \multicolumn{2}{|l|}{Possible with a motor equipped with an absolute position detector. (Possible to select the absolute data method or incremental method for each axis)} \\
\hline \multicolumn{2}{|l|}{PBUS I/O module} & \multicolumn{2}{|l|}{256 points} \\
\hline
\end{tabular}
(Note-1) : A setting range has been extended with a high resolution encoder.

\section*{3. POSITIONING SIGNALS}

\section*{3. POSITIONING SIGNALS}

The internal signals of the servo system CPU and the external signals sent to the servo system CPU are used as positioning signals.
(1) Internal signals

Of the devices available in the servo system CPU, the following four types are used for the internal signals of the servo system CPU.
- Internal relay (M) \(\qquad\)
- Special relay (SP.M) M9073 to M9079 (7 points)
- Data register (D) D0 to D799 (800 points)
- Special register (SP.D) D9180 to D9199 (20 points)
(2) External signals

The external signals input to the servo system CPU are the upper and lower stroke end limit switch input signals, stop signals, proximity dog signal, speed/position switching signal, and manual pulse generator input signals.
- Upper and lower stroke end \(\qquad\) Signals that control the upper limit and limit switch input signal lower limit of the positioning range
- Stop signal \(\qquad\) Stop signal for speed control
- Proximity dog signal The ON/OFF signal from the proximity dog
- Speed/position switching signal Signal that switches control from speed to position control
- Manual pulse generator input

Signal from the manual pulse generator

Fig.3.1 Flow of positioning Signals

\section*{3. POSITIONING SIGNAL}

The following section describes the positioning devices.
It indicates the device refresh cycles for signals with the positioning direction PCPU \(\rightarrow\) SCPU and the device fetch cycles for those with the positioning direction \(S C P U \rightarrow P C P U\).

\subsection*{3.1 Internal Relays}
(1) List of internal relays
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Device \\
No.
\end{tabular} & Purpose \\
\hline M0 & \begin{tabular}{c}
User device \\
(2000 points)
\end{tabular} \\
\hline M2000 & \begin{tabular}{c}
Common device \\
(320 points)
\end{tabular} \\
\hline M2320 & \begin{tabular}{c}
Unusable \\
(80 points)
\end{tabular} \\
\hline M2400 & \begin{tabular}{c}
Axis status \\
(20 points \(\times 32\) axes)
\end{tabular} \\
\hline M3040 & \begin{tabular}{c}
Unusable \\
(160 points)
\end{tabular} \\
\hline M3200 & \begin{tabular}{c}
Axis command signal \\
(20 points \(\times 32\) axes)
\end{tabular} \\
M3839 & M3840 \\
\hline M8191 & \begin{tabular}{c}
User device \\
\((4352\) points)
\end{tabular} \\
\hline
\end{tabular}

\section*{POINTS}
- Total Number of User Device Points
```

6 3 5 2 points

```
(1) Internal relays for positioning control are not latched even inside the latch range.
In this manual, in order to indicate that internal relays for positioning control are not latched, the expression used in this text is "M2000 to M3839".
(2) Internal relays for positioning control are monitored from peripheral devices as shown below.
(a) When peripheral devices are started with GSV13PE/GSV22PE, positioning control internal relays within a latch range are indicated by L2000 to L3839.

\section*{3. POSITIONING SIGNAL}

\section*{(2) Axis statuses}

\section*{3. POSITIONING SIGNAL}
(3) Axis command signals

(4) Common devices

"END" in the Refresh Cycle field indicates " 50 ms " or "PLC program scan time", which is longer.

\section*{3. POSITIONING SIGNAL}

"END" in the Refresh Cycle field indicates "50ms" or "PLC program scan time", which is longer.

\section*{3. POSITIONING SIGNALS}

\subsection*{3.1.1 Axis status}
(1) Positioning start completed signal (M2400+20n)
(a) This signal comes ON when starting of positioning control of the axis designated by the SVST instruction in the sequence program is completed. It does not come ON when positioning control starts due to a zeroing, JOG operation or manual pulse generator operation.
It can be used, for example, to read an M-code when positioning is started. (See Section 8.2.)
(b) The positioning start completed signal goes OFF at the leading edge \((\mathrm{OFF} \rightarrow \mathrm{ON})\) of the end signal OFF command (M3204+20n) or when positioning is completed.

\section*{At the leading edge (OFF \(\rightarrow\) ON) of the end signal OFF command (M1804+20n)}

SVST instruction
Start reception flag (M2001+n) \({ }^{(\text {Note-1) }}\)
Positioning start completed signal (M1600+20n) \({ }^{(\text {Note-1) }}\)
End signal OFF command (M3204+20n) \({ }^{\text {(Note-1) }}\)

\section*{When positioning is completed}

SVST instruction

Start reception flag (M2001+n) \({ }^{(\text {Note-1) }}\)
Positioning start completed
signal (M2400+20n) \({ }^{(\text {Note-1) }}\)

\section*{REMARK}
(Note-1):In the preceding descriptions, " \(n\) " in M2001+n, M3204+20n, etc. indicates a value for each axis No. in the following tables.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) \\
\hline 1 & 0 & 9 & 8 & 17 & 16 & 25 & 24 \\
\hline 2 & 1 & 10 & 9 & 18 & 17 & 26 & 25 \\
\hline 3 & 2 & 11 & 10 & 19 & 18 & 27 & 26 \\
\hline 4 & 3 & 12 & 11 & 20 & 19 & 28 & 27 \\
\hline 5 & 4 & 13 & 12 & 21 & 20 & 29 & 28 \\
\hline 6 & 5 & 14 & 13 & 22 & 21 & 30 & 29 \\
\hline 7 & 6 & 15 & 14 & 23 & 22 & 31 & 30 \\
\hline 8 & 7 & 16 & 15 & 24 & 23 & 32 & 31 \\
\hline
\end{tabular}

Make the following calculation to find the device number corresponding to each axis.
(Example) M3200 +20 n (stop command) \(=\) M3200 \(+20 \times 31=\) M3820
M3215+20n (servo off) \(=\) M3215+20×31=M3835
(2) Positioning completed signal (M2401+20n)
(a) This signal comes ON when positioning control of the axis designated by the SVST instruction in the sequence program is completed.
It does not come ON when positioning control is started, or stopped part way through, due to a zeroing, JOG operation, manual pulse generator operation, or speed control.
It does not come on when positioning is stopped part way through.
It can be used, for example, to read an M-code on completion of positioning. (See Section 8.2.)
(b) The positioning completed signal goes OFF at the leading edge (OFF \(\rightarrow \mathrm{ON}\)) of the end signal OFF command (M3204+20n), or when a positioning control start is completed.
At the leading edge (OFF \(\rightarrow\) ON) of the end signal OFF command (M3204+20n)

When the next positioning control start is completed

(3) In-position signal (M2402+20n)
(a) The in-position signal comes ON when the number of droop pulses in the deviation counter enters the "in-position range" set in the servo parameters. It goes off when axis motion starts.

(b) An in-position check is performed in the following cases.
- When the servo power supply is switched on
- After automatic acceleration/deceleration is started during positioning control
- After deceleration is started as a result of the JOG start signal going OFF
- When manual pulse generator operation is in progress
- After the proximity dog comes ON during a zeroing
- After deceleration is started as a result of a stop command
- When a speed change to a speed of " 0 " is executed
(4) Command in-position signal (M2403+20n)
(a) The command in-position signal comes ON when the absolute value of the difference between the command position and the feed current value enters the "command in-position range" set in the fixed parameters.
It goes OFF in the following cases.
- When positioning control starts
- When a zeroing is executed
- When speed control is executed
- When JOG operation is performed
- When manual pulse generator operation is performed
(b) Command in-position checks are continually performed during positioning control.
Command in-position checks are not performed during speed control or during speed control in speed/position switching control.

(5) Speed control in progress signal (M2404+20n)
(a) The speed control in progress signal is ON during speed control and is used to determine whether speed control or position control is currently being executed.
In speed/position switching control, it remains ON until the switch from speed control to position control is executed on receipt of the CHANGE signal from an external source.
(b) The speed control in progress signal is OFF when the power is switched ON and during position control.

(6) Speed/position switching latch signal (M2405+20n)
(a) The speed/position switching latch signal comes ON when control is switched from speed control to position control.
It can be used as an interlock signal to enable or disable changing of the travel value in position control.
(b) The signal goes OFF when any of the following are started.
- Position control
- Speed/position switching control
- Speed control
- JOG operation
- Manual pulse generator operation

(7) Zero pass signal (M2406+20n)

This signal comes ON when the zero point is passed after the power to the servo amplifier has been switched ON.
Once the zero point has been passed, the signal remains ON until the CPU has been reset.
In the zeroing method of proximity dog or count type, however, the signal goes OFF once at the start of zeroing and comes ON again when the next zero point is passed.
(8) Error detection signal (M2407+20n)
(a) The error detection signal comes ON when a minor error or major error is detected and is used to determine whether or not errors have occurred. When a minor error is detected, the corresponding error code \({ }^{(\text {Note-1) }}\) is stored in the minor error code storage area.(see section 3.2.1) When a major error is detected, the corresponding error code \({ }^{(\text {Note-2) }}\) is stored in the major error code storage area. (see section 3.2.1)
(b) When the error reset signal (M3207+20n) comes ON, the error detection signal goes OFF.

\section*{REMARKS}
(Note-1):For details on the error codes when minor errors occur, see Appendix 2.2.
(Note-2):For details on the error codes when major errors occur, see Appendix 2.3.
(9) Servo error detection signal (M2408+20n)
(a) The servo error detection signal comes ON when an error occurs at the servo amplifier side (excluding errors that cause alarms, and emergency stops) \({ }^{(\text {Note-1) }}\), and is used to determine whether or not servo errors have occurred.
When an error is detected at the servo amplifier side, the corresponding error code \({ }^{(\text {Note-1) }}\) is stored in the servo error code storage area.
(b) The servo error detection signal goes OFF when the servo error reset signal (M3208+20n) comes ON, or when the servo power supply is switched back on.

\section*{REMARK}
(Note-1):For details on the error codes of errors detected at the servo amplifier side, see Appendix 2.4.
(10) Zeroing request signal (M2409+20n)

This signal comes ON when it is necessary to confirm the home position address when the power is switched on or during positioning control.
(a) When not using an absolute value system
1) The zeroing request signal comes \(O N\) in the following cases:
- When the power is switched on, or the servo system CPU is reset.
- During a zeroing operation.
2) The zeroing request signal goes OFF when the zeroing operation is completed.
(b) When using an absolute value system
1) The zeroing request signal comes on in the following cases:
- During a zeroing operation.
- When a backup data (reference value) sum check error occurs (when the power is switched on).
2) The zeroing request signal goes OFF when the zeroing operation is completed.
(11) Zeroing completed signal (M2410+20n)
(a) The zeroing completed signal comes ON when the execution of a zeroing operation in accordance with a servo program has been completed normally.
(b) It goes OFF when positioning is started, when JOG operation is started, or when manual pulse generator operation is started.
(c) If an attempt is made to execute a proximity dog zeroing while the zeroing completed signal is ON, the "ZERO RETURN START" error occurs, making it impossible to start the zeroing.
(12) FLS signal (M2411+20n)
(a) FLS signal is controlled by the ON/OFF status of the upper stroke end limit switch input (FLS) to the A278LX or A172SENC from an external source.
- Upper stroke end limit switch input OFF \(\qquad\) FLS signal : ON
- Upper stroke end limit switch input ON \(\qquad\) FLS signal : OFF
(b) The status of the upper stroke end limit switch input (FLS) when the FLS signal is ON/OFF is indicated in the figure below.

FLS signal: OFF A278LX or A172SENC

(13) RLS signal (M2412+20n)
(a)The RLS signal is controlled by the ON/OFF status of the lower stroke end limit switch input (FLS) to the A278LX or A172SENC from an external source.
- Lower stroke end limit switch input OFF \(\qquad\) RLS signal: ON
- Lower stroke end limit switch input ON \(\qquad\) RLS signal: OFF
(b) The status of the lower stroke end limit switch input (RLS) when the RLS signal is ON/OFF is indicated in the figure below.

(14) STOP signal (M2413+20n)
(a) The STOP signal is controlled by the ON/OFF status of the stop signal (STOP) sent to the A278LX or A172SENC from an external source.
- Stop signal OFF STOP signal: OFF
- Stop signal ON STOP signal: ON
(b) The status of the external stop switch (STOP) when the STOP signal is ON/OFF is indicated in the figure below.

(15) DOG signal (M2414+20n)
(a) The DOG signal is controlled by the ON/OFF status of the external proximity dog (DOG) switch connected to the A278LX or A172SENC.
(b) Independently of whether the "normally open contact input" or "normally closed contact input" is specified in the system settings, the proximity dog signal turns ON when the proximity dog switch turns ON, and the proximity dog signal turns OFF when the proximity dog switch turns OFF.
(c) At the setting of the "normally open contact input" in the system settings, the proximity dog input is provided when the proximity dog switch turns ON. At the setting of the "normally closed contact input", the proximity dog input is provided when the proximity dog switch turns OFF.
(16) Servo READY signal (M2415+20n)
(a) The servo READY signal comes ON when the servo amplifiers connected to each axis are in the READY status.
(b) The signal goes OFF in the following cases.
- When M2042 is OFF
- When no servo amplifier is installed
- When the servo parameters have not been set
- When the power supply module has received an emergency stop input from an external source
- When the M3215+20n signal comes ON and establishes the servo OFF status
- When a servo error occurs For details, see Appendix 2.4 "Servo Errors"

\section*{POINT}
(1) If the ADU using axis results in a servo error, the servo-off axis varies with the system settings as indicated below.
(Only when the A273UHCPU is used)
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Processing Setting for \\
ADU Servo Error
\end{tabular} & \multicolumn{1}{|c|}{ Servo-Off Axis } \\
\hline System-based servo off & \begin{tabular}{l}
All axes in the system including the axis \\
which resulted in a servo error
\end{tabular} \\
\hline Only own-axis servo off & Axis which resulted in a servo error \\
\hline
\end{tabular}
(2) When an axis driven by an MR- \(\square\)-B becomes subject to a servo error, the affected axis only goes into the servo OFF status.
(17) Torque control in progress signal (M2416+20n)

Signals for axes whose torque is being controlled are ON.
(18) CHANGE signal (M2417+20n)
(a) The CHANGE signal is controlled by the ON/OFF status of the external speed-position control change input (CHANGE) switch connected to the A278LX or A172SENC.
- When speed-position change input is OFF \(\qquad\) CHANGE signal: OFF
- When speed-position change input is ON \(\qquad\) CHANGE signal: ON
(b) When the CHANGE signal is ON/OFF, the status of the speed change switch (CHANGE) is as shown below.

(19) M-code output signal (M2419+20n)
(a) This signal indicates M -code output in progress.
(b) This signal is set to OFF at the time of stop command, cancel signal, skip signal or FIN signal input.

\section*{POINTS}
(1) The FIN signal and "M-code output in progress" signal are both for the FIN signal wait function.
(2) The FIN signal and "M-code output in progress" signal are effective only when FIN acceleration/deceleration is designated in the servo program. Otherwise, the FIN signal wait function is disabled, and the "M-code output in progress" signal is not set to ON.

\section*{3. POSITIONING SIGNALS}

\subsection*{3.1.2 Axis command signals}
(1) Stop command (M3200+20n)
(a) The stop command is a signal used to stop an axis that is currently being driven and becomes effective at its leading edge (OFF \(\rightarrow \mathrm{ON}\)). (An axis for which the stop command is ON cannot be started.)

(b) It can also be used as the stop command when speed control is being executed.
(For details on speed control, see Section 7.12 or Section 7.13.)
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Control Being Executed} & \multicolumn{2}{|l|}{Processing when the Stop Command Comes ON} \\
\hline & If Control is Being Executed & If Deceleration Stop Processing is Being Executed \\
\hline Position control & \multirow[t]{3}{*}{The axis decelerates to a stop in the deceleration time set in the parameter block or servo program.} & \multirow[t]{3}{*}{The stop command is ignored and deceleration stop processing continues.} \\
\hline Speed control (I, II) & & \\
\hline JOG operation & & \\
\hline Manual pulse generator operation & An immediate stop is executed, with no deceleration processing. & - \\
\hline Zeroing & \multicolumn{2}{|l|}{\begin{tabular}{l}
(1) The axis decelerates to a stop in the deceleration time set in the parameter block. \\
(2) A "stop during zeroing" error occurs and the error code (202) is stored in the minor error storage area for each axis.
\end{tabular}} \\
\hline
\end{tabular}

\section*{POINT}

If a stop is executed by turning ON the stop command (M3200+20n) during a zeroing operation, re-execute the zeroing operation.
If the stop command came ON after the proximity dog came ON in the zeroing operation, first retract to a position before the point where the proximity dog comes ON using JOG operation or positioning, and then execute the zeroing operation again.
(2) Rapid stop command (M3201+20n)
(a) The rapid stop command is a signal used to rapidly stop an axis that is currently being driven and becomes effective at its leading edge \((\mathrm{OFF} \rightarrow \mathrm{ON})\). (An axis for which the rapid stop command is ON cannot be started.)

(b) The details of stop processing when the rapid stop command comes ON are presented in the table below.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Control Being Executed} & \multicolumn{2}{|l|}{Processing when the Rapid Stop Command Comes ON} \\
\hline & If Control is Being Executed & If Deceleration Stop Processing is Being Executed \\
\hline Position control & \multirow[t]{3}{*}{The axis decelerates to a stop in the deceleration time set in the parameter block or servo program.} & \multirow[t]{3}{*}{Deceleration processing is canceled and rapid stop processing executed instead.} \\
\hline Speed control (I, II) & & \\
\hline JOG operation & & \\
\hline Manual pulse generator operation & An immediate stop is executed, with no deceleration processing. & \\
\hline Zeroing & \multicolumn{2}{|l|}{\begin{tabular}{l}
(1) The axis decelerates to a stop in the rapid stop deceleration time set in the parameter block. \\
(2) A "stop during zeroing" error occurs and the error code (203) is stored in the minor error storage area for each axis.
\end{tabular}} \\
\hline
\end{tabular}

\section*{POINT}

If a stop is executed by turning ON the rapid stop command (M3201+20n) during a zeroing operation, re-execute the zeroing operation. If the rapid stop command came ON after the proximity dog came ON in the zeroing operation, first retract to a position before the point where the proximity dog comes ON using JOG operation or positioning, and then execute the zeroing operation again.
(3) Forward JOG start command (M3202+20n)/Reverse JOG start command (M3203+20n)
(a) While the sequence program keeps \(\mathrm{M} 3202+20\) n ON, JOG operation is executed in the direction in which address numbers increase. When M3202+20n is turned OFF, a deceleration stop is executed in the deceleration time set in the parameter block.
(b) While the sequence program keeps M3203+20n ON, JOG operation is executed in the direction in which address numbers decrease. When M3203+20n is turned OFF, a deceleration stop is executed in the deceleration time set in the parameter block.

\section*{POINT}

Establish an interlock in the sequence program to make it impossible for the forward JOG start command (M3202+20n) and the reverse JOG start command (M3203+20n) to be ON at the same time.
(4) End signal OFF command (M3204+20n)
(a) The end signal OFF command is used to turn off the positioning start completed signal (\(\mathrm{M} 2400+20 \mathrm{n}\)) and the positioning completed signal (M2401+20n) by using the sequence program.

Positioning start completed signal (M2400+20n)
Positioning completed signal (M2401+20n)
End signal OFF command (M3204+20n)

\section*{POINT}

Do not turn the end signal OFF command ON with a PLS command. If it is turned ON with a PLS command, it will not be possible to turn OFF the positioning start completed signal (M2400+20n) or the positioning completed signal (M2401+20n).
(5) Speed/position switching enable command (M3205+20n)
(a) The speed/position switching enable command is used to make the CHANGE signal (signal for switching from speed to position control) effective from an external source.
- ON Control switches from speed control to position control when the CHANGE signal comes ON.
- OFF Control does not switch from speed to position control even if the CHANGE signal comes ON.

(6) Limit switch output enable command (M3206+20n)

The limit switch output enable command is used to enable limit switch output.
- ON The limit switch output ON/OFF pattern can be output.
- OFF Limit switch output goes OFF.
(7) Error reset command (M3207+20n)

The error reset command is used to clear the minor error code or major error code storage area of an axis for which the error detection signal has come ON (M2407+20n: ON), and reset the error detection signal (M2407+20n).

(8) Servo error reset command (M3208+20n)

The servo error reset command is used to clear the servo error code storage area of an axis for which the servo error detection signal has come ON (M2408+20n: ON), and reset the servo error detection signal (M2408+20n).

\section*{POINT}

Do not turn the error reset command (M3207+20n) or servo error reset command (M3208+20n) ON with a PLS command.
If a PLS command is used, it will not be possible to reset the error or servo error.

\section*{REMARK}

For details on minor error code, major error code, and servo error code storage areas, see Appendix 2.
(9) External STOP input/invalid when starting command (M3209+20n)

This signal is used to make external STOP signal input valid or invalid.
- ON.........External STOP input is set as invalid, and even axes for which STOP input is currently ON can be started.
- OFFExternal STOP input is set as valid, and axes for which STOP input is currently ON cannot be started.

\section*{POINT}

To stop an axis by external STOP input after it has been started with the M3209+20n command ON, switch the STOP input from OFF to ON (if STOP input is ON when the axis is started, switch it from ON to OFF to ON).
(10) Feed current value update request command (M3212+20n)

This signal is used to set whether the feed current value will be cleared or not when motion is started in speed/position switching control.
- ON........ The feed current value is updated, starting from when motion is started.
The feed current value is not cleared on starting.
- OFF...... The feed current value is updated, starting from when motion is started.
The feed current value is cleared on starting.

\section*{POINT}

When motion is started with M3212+20n, leave M3212+20n ON until positioning control has been completed.
If M3212+20n is turned OFF part way through, the feed current value may not be reliable.
(11) Servo OFF command (M3215+20n)

The servo OFF command is used to establish the servo OFF status (free run status).
- M3215+20n : OFF Servo ON
- M3215+20n : ON Servo OFF (free run status)

This command is not effective during positioning and should therefore be executed on completion of positioning.
\begin{tabular}{|c|c|}
\hline CAUTION \\
\hline Turn the power supply at the servo side OFF before turning a servomotor by hand. \\
\hline
\end{tabular}
(12) FIN signal (M3219+20n)

When an M-code is set in a point during positioning, travel to the next block does not take place until the FIN signal state changes as follows:
\(\mathrm{OFF} \rightarrow \mathrm{ON} \rightarrow \mathrm{OFF}\)
Positioning to the next block begins after the FIN signal state changes as above.

\subsection*{3.1.3 Common Device}

\section*{POINTS}
(1) Internal relays for positioning control are not latched even inside the latch range.
In this manual, in order to indicate that internal relays for positioning control are not latched, the expression used in this text is "M2000 to M2319".
(2) The range of devices allocated as internal relays for positioning control cannot be used by the user even if their applications have not been set.
(1) Sequencer READY flag (M2000) \(\qquad\) Signal sent from SCPU to PCPU
(a) This signal serves to notify the PCPU that the SCPU is normal. It is switched ON and OFF by the sequence program.
1) While M2000 is ON, the positioning control or zeroing specified by the servo program, or the JOG operation or manual pulse generator operation specified by the sequence program, can be executed.
2) Even if M2000 is turned ON while the test mode for testing from a peripheral device is effective (while M9075 is ON), control in 1) above will not be executed.
(b) The fixed parameters, servo parameters, and limit switch output parameters can only be changed using a peripheral device when M2000 is OFF. If an attempt is made to change this data while M2000 is ON, an error will occur.
(c) When M2000 is switched from OFF to ON, the following processing occurs.
1) Processing details
- The servo parameters are transferred to the servo amplifier.
- The M-code storage area for all axes is cleared.
- The default value of \(300 \%\) is set in the torque limit value storage area. (See Section 4.4.)
- The PCPU READY-completed flag (M9074) is turned ON.
2) If there is an axis currently being driven, an error occurs, and the processing in (c) 1) above is not executed.
3) While the test mode is in effect, the processing in (c) 1) above is not executed. When the test mode is cancelled, the processing in (c) 1) above is executed if M 2000 is ON .

(d) When M2000 is switched from ON to OFF, the following processing is executed.
1) Processing details
- The PCPU READY-completed flag (M9074) is turned OFF.
- The axis being driven is decelerated to a stop.

\section*{POINT}

The PLC READY flag (M2000) goes OFF when the servo system CPU is in the STOP status. When the RUN status is re-established, the status is the same as before the STOP was executed.

(2) Start accept flag (M2001+n) \(\qquad\) Signal sent from PCPU to SCPU
(a) The start accept flag comes ON when the positioning start (SVST) instruction is executed in the sequence program: use it as an interlock to enable or disable execution of the SVST instruction.

(b) The start accept flag ON/OFF processing takes the following form.
1) The start accept flag for the designated axis comes ON in response to a SVST instruction, and goes OFF on completion of positioning. The start accept flag will also go OFF if positioning is stopped part way through.
(However, if positioning is stopped part way through by a speed change to speed 0 , the start accept flag will remain ON.)

2) When positioning control is executed by turning ON the JOG operation command (M3202+20n or M3203+20n), the start accept flag goes OFF when positioning is stopped by turning the JOG operation command OFF.
3) The start accept flag is ON while the manual pulse generator enable flag (M2051 to M2053: ON) is ON.
The start accept flag is OFF while the manual pulse generator enable flag (M2051 to M2053: OFF) is OFF.
4) The start accept flag is ON during a current value change initiated by a CHGA instruction. It goes OFF on completion of the current value change.

5) When M2000 is OFF, execution of a SVST instruction causes the start accept flag to come ON; the flag goes OFF when M2000 comes ON.

The user must not turn start accept flags ON/OFF.
- If a start accept flag that is ON is switched OFF with the sequence program or a peripheral device, no error will occur but the positioning operation will not be reliable. Depending on the type of machine, it might operate in an unanticipated manner.
- If a start accept flag that is OFF is switched ON with the sequence program or a peripheral device, no error will occur at that time, but the next time an attempt is made to start the axis an error will occur during a start accept flag being ON and the axis will not start.

\section*{REMARK}

A numerical value corresponding to an axis number is entered for " n " in "M2001 + n".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) \\
\hline 1 & 0 & 9 & 8 & 17 & 16 & 25 & 24 \\
\hline 2 & 1 & 10 & 9 & 18 & 17 & 26 & 25 \\
\hline 3 & 2 & 11 & 10 & 19 & 18 & 27 & 26 \\
\hline 4 & 3 & 12 & 11 & 20 & 19 & 28 & 27 \\
\hline 5 & 4 & 13 & 12 & 21 & 20 & 29 & 28 \\
\hline 6 & 5 & 14 & 13 & 22 & 21 & 30 & 29 \\
\hline 7 & 6 & 15 & 14 & 23 & 22 & 31 & 30 \\
\hline 8 & 7 & 16 & 15 & 24 & 23 & 32 & 31 \\
\hline
\end{tabular}
(3) PC link communication error flag (M2034) \(\qquad\) Signal sent from PCPU to SCPU
This flag comes ON when an error occurs during personal computer linking communication.
OFF: No PC link communication error
ON : PC link communication error detected
(Flag changes to OFF if normal communication is restored.)
For details on PC link communication error, see APPENDIX 2-5.
(4) Speed switching point designation flag (M2040) \(\qquad\) Signal sent from SCPU to PCPU
\begin{tabular}{|c|c|c|}
\hline OS & SV13 & SV22 \\
\hline Device No. & \multicolumn{2}{|c|}{ M2040 } \\
\hline
\end{tabular}

The speed switching point designation flag is used when a speed change is designated at the pass point in constant speed control.
(a) By turning M2040 ON before the start of constant speed control (before the servo program is started using the SVST instruction), control can be executed with a speed change at the start of the pass point.
- OFFSpeed is changed to a designated speed at a pass point in constant speed control.
- ONSpeed has been changed to a designated speed at a pass point in constant speed control.

(5) System setting error flag (M2041) \(\qquad\) Signal sent from PCPU to SCPU When the power is switched ON, or when the servo system CPU is reset, the system setting data set with a peripheral device is input, and a check is performed to determine if the set data matches the module mounting status (of the CPU base unit and extension base units).
- ON............. Error
- OFF........... Normal
(a) When an error occurs, the ERROR LED at the front of the CPU comes on. Also, the error log can be known from the peripheral devices started by GSV13PE or GSV22PE.
(b) When M2041 is ON, positioning cannot be started. You must eliminate the cause of the error and switch the power back ON, or reset the servo system CPU.

\section*{REMARK}

Even if a module is loaded at a slot set as "NO USE" in the system setting data set with a peripheral device, that slot will be regarded as not used.
(6) All axes servo ON command (M2042) \(\qquad\) Signal from SCPU to PCPU The all axes servo ON command is used to enable servo operation.
(a) Servo operation enabled
M2042 is turned ON while the servo OFF signal (M3215+20n) is OFF and there is no servo error.
(b) Servo operation disable \(\qquad\) - M2042 is OFF
- The servo OFF signal (M3215+20n) is ON
- Servo error

\section*{POINT}

M2042 has been turned ON, it will not go OFF even if the CPU is set in the STOP status.
(7) Optional slot module error detection flag (M2047) \(\qquad\) Signal from PCPU to SCPU
This flag is used to determine whether the status of modules mounted on the CPU base unit and extension base units is "normal" or "abnormal".
- ON \(\qquad\) When mounted module is abnormal
- OFF \(\qquad\) When mounted module is normal
The module information when the power is switched ON and module information after the power has been switched ON is always checked and errors are detected.
(a) When M2047 comes ON, the ERROR LED of the A273UHCPU lights.

(b) Use the sequence program to execute appropriate processing (stopping the driven axis, establishing the servo OFF status) when an error occurs.
(8) JOG simultaneous start command (M2048) Signal sent from SCPU to PCPU
(a) When M2048 is turned ON, JOG operation is simultaneously started on the axis for which JOG operation is to be executed as set in the JOG operation simultaneous start axis setting register (D710 to D713).
(b) When M2048 is turned OFF, motion on the axis currently executing JOG operation decelerates to a stop.
(9) All axes servo ON accept flag (M2049)......... Signal sent from PCPU to SCPU The all axes servo ON accept flag serves to notify that servo operation is possible.
- ON The servo motor can be driven.
- OFF The servo motor cannot be driven.

(10) Start buffer full (M2050) \(\qquad\) Signal sent from PCPU to SCPU
(a) This signal comes on when 64 or more requests have been issued simultaneously to the PCPU by means of position start (SVST) instructions in the sequence program.
(b) Reset M2050 by using the sequence program.
(11) Manual pulse generator enable flag (M2051 to M2053). Signal sent from SCPU to PCPU
The manual pulse generator enable flags set the enabled or disabled status for positioning with the pulse input from the manual pulse generators connected to P1 to P3 \({ }^{\text {(Note) }}\) of the A273EX or A172SENC.
- ONPositioning control is executed in accordance with the input from the manual pulse generators.
- OFF........Positioning with the manual pulse generators is not possible because the input from the manual pulse generators is ignored.

\section*{REMARK}
(Note): For details on the P1 to P3 connector of the A273EX or A172SENC, refer to the Motion Controller User's Manual.
(12) Speed change flags (M2061+n) Signal from PCPU to SCPU The speed change flags come ON when a speed change is executed in response to a control change (CHGV) instruction in the sequence program: use them for interlocks in speed change programs.

\section*{REMARK}

A numerical value corresponding to an axis number is entered for " n " in "M2061+n".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) \\
\hline 1 & 0 & 9 & 8 & 17 & 16 & 25 & 24 \\
\hline 2 & 1 & 10 & 9 & 18 & 17 & 26 & 25 \\
\hline 3 & 2 & 11 & 10 & 19 & 18 & 27 & 26 \\
\hline 4 & 3 & 12 & 11 & 20 & 19 & 28 & 27 \\
\hline 5 & 4 & 13 & 12 & 21 & 20 & 29 & 28 \\
\hline 6 & 5 & 14 & 13 & 22 & 21 & 30 & 29 \\
\hline 7 & 6 & 15 & 14 & 23 & 22 & 31 & 30 \\
\hline 8 & 7 & 16 & 15 & 24 & 23 & 32 & 31 \\
\hline
\end{tabular}
(13) Automatically decelerating flag (M2128 to M2159) \(\qquad\) Signal from PCPU to SCPU
This signal is ON while automatic deceleration processing is performed under positioning control or position follow-up control.
(a) Under position follow-up control, this flag is ON during automatic deceleration to the command address, but turns OFF if the command address is changed during that time.
(b) Under control in any control system, this flag turns OFF on normal start completion.
(c) In any of the following cases, the automatically decelerating flag does not turn ON.
- During deceleration due to JOG signal turned OFF
- During manual pulse generator operation
- At midway deceleration due to stop command or stop cause occurrence
- When travel value is 0

The automatically decelerating flag list is given below.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & Device No. & Axis No. & Device No. & Axis No. & Device No. & Axis No. & Device No. \\
\hline 1 & M 2128 & 9 & M 2136 & 17 & M 2144 & 25 & M 2152 \\
\hline 2 & M 2129 & 10 & M 2137 & 18 & M 2145 & 26 & M 2153 \\
\hline 3 & M 2130 & 11 & M 2138 & 19 & M 2146 & 27 & M 2154 \\
\hline 4 & M 2131 & 12 & M 2139 & 20 & M 2147 & 28 & M 2155 \\
\hline 5 & M 2132 & 13 & M 2140 & 21 & M 2148 & 29 & M 2156 \\
\hline 6 & M 2133 & 14 & M 2141 & 22 & M 2149 & 30 & M 2157 \\
\hline 7 & M 2134 & 15 & M 2142 & 23 & M 2150 & 31 & M 2158 \\
\hline 8 & M 2135 & 16 & M 2143 & 24 & M 2151 & 32 & M 2159 \\
\hline
\end{tabular}

\section*{REMARK}

In the SV22 virtual mode, the flag is that of the virtual servo motor shaft.
(14) Speed change " 0 " accepting flag (M2240 to M2271) \(\qquad\) Signal from PCPU to SCPU
The speed change " 0 " accepting flag is ON while a speed change request for speed " 0 " is being accepted.
This signal turns ON when the speed change request for speed " 0 " is accepted during a start. After that, this signal turns OFF when a speed change to other than speed " 0 " is accepted or on completion of a stop due to a stop cause.

The speed change " 0 " accepting flag list is given below.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & Device No. & Axis No. & Device No. & Axis No. & Device No. & Axis No. & Device No. \\
\hline 1 & M 2240 & 9 & M 2248 & 17 & M 2256 & 25 & M 2264 \\
\hline 2 & M 2241 & 10 & M 2249 & 18 & M 2257 & 26 & M 2265 \\
\hline 3 & M 2242 & 11 & M 2250 & 19 & M 2258 & 27 & M 2266 \\
\hline 4 & M 2243 & 12 & M 2251 & 20 & M 2259 & 28 & M 2267 \\
\hline 5 & M 2244 & 13 & M 2252 & 21 & M 2260 & 29 & M 2268 \\
\hline 6 & M 2245 & 14 & M 2253 & 22 & M 2261 & 30 & M 2269 \\
\hline 7 & M 2246 & 15 & M 2254 & 23 & M 2262 & 31 & M 2270 \\
\hline 8 & M 2247 & 16 & M 2255 & 24 & M 2263 & 32 & M 2271 \\
\hline
\end{tabular}

\section*{REMARK}
(1) Even during a stop, the ON status of the start acceptance flag (M2001 to M2032) indicates that the speed change " 0 " request is accepted. Check with this speed change "0" flag.
(2) During interpolation, the flags corresponding to the interpolation axes are set.
(3) In any of the following cases, the speed change " 0 " request is invalid.
- After deceleration due to JOG OFF
- During manual pulse generator operation
- After positioning automatic deceleration start
- After deceleration due to stop cause
(4) In the SV22 virtual mode, the flag is that of the virtual servo motor shaft.
(a) The flag turns OFF if a speed change request for other than speed "0" occurs during deceleration to a stop due to speed change " 0 ".

(b) The flag turns OFF if a stop cause occurs after speed change "0" acceptance.

(c) The speed change " 0 " accepting flag does not turn ON if a speed change " 0 " occurs after an automatic deceleration start.

(d) Under position follow-up control, the speed change "0" accepting flag turns ON if a speed change "0" occurs after an automatic deceleration start to the "specified address".

\section*{REMARK}

Under position follow-up control, the axis will not start if the "command address" is changed during speed change " 0 " acceptance.

\section*{3. POSITIONING SIGNALS}

\subsection*{3.2 Data Registers}
(1) Data registers
\begin{tabular}{|c|c|}
\hline Device No. & Purpose \\
\hline D0 & \begin{tabular}{c}
Axis monitor device \\
\((20\) points \(\times 32\) axes \()\)
\end{tabular} \\
\hline D640 & \begin{tabular}{c}
Control change register \\
\((2\) points \(\times 32\) axes \()\)
\end{tabular} \\
\hline D704 & Common device (96 points) \\
D799 & \begin{tabular}{c}
User device \\
\((7392\) points \()\)
\end{tabular} \\
\hline D800 & \\
\hline
\end{tabular}

\section*{POINT}
- Total number of user device points

\section*{800 points}
(2) Axis monitor devices

"END" in the Refresh Cycle field indicates " 50 ms " or "PLC program scan time", which is longer.

\section*{3. POSITIONING SIGNALS}
(3) Control change registers

\section*{3. POSITIONING SIGNALS}
(4) Common devices

\subsection*{3.2.1 Monitoring data area}

The monitoring data area is used by the PCPU to store data such as the feed current value during positioning control, the real current value, and the number of droop pulses in the deviation counter.
It can be used to check the positioning control status using the sequence program. The user cannot write data into the monitoring data area (with the exception of the travel value register).
For details on the delay time between a positioning device (input, internal relay, special relay) going ON or OFF and storage of data in the monitor data area, see APPENDIX 6 "Processing Times".
(1) Feed current value register (D0+20n) \(\qquad\) Data from the PCPU to the SCPU
(a) This register stores the target address output to the servo amplifier on the basis of the positioning address/travel value designated in the servo program.
1) In fixed-pitch feed control, the travel value counted up from 0 after motion starts is stored.
2) In speed/position switching control, the current value counted up from the address when motion starts is stored.
However, the address at start time varies depending on the ON/OFF status of the feed current value update command (M3212+20n) at start time.
- M3212+20n: OFF.........Resets the feed current value to 0 at start time.
- M3212+20n: ON...........Not reset the feed current value at start time.
3) During speed control, " 0 " is stored.
(b) The stroke range check is performed on this feed current value data.
(2) Real current value register (D2+20n) \(\qquad\) Data from the PCPU to the SCPU
(a) This register stores the current value attained in real travel (the feed current value minus the droop pulses in the deviation counter).
(b) In the stopped status, the feed current value is equal to the real current value.
(3) Deviation counter value register (D4+20n)....Data from the PCPU to the SCPU This register stores the difference between the feed current value and the real current value.
(4) Minor error code register (D6+20n). \(\qquad\) Data from the PCPU to the SCPU
(a) This register stores the relevant error code (see Appendix 2.2) when a minor error occurs.
If another minor error occurs, the previous error code is overwritten by the new error code.
(b) Minor error codes can be cleared by an error reset signal (M3207+20n).
(5) Major error code register (D7+20n) \(\qquad\) Data from the PCPU to the SCPU
(a) This register stores the relevant error code (see Appendix 2.3) when a major error occurs.
If another major error occurs, the previous error code is overwritten by the new error code.
(b) Major error codes can be cleared by an error reset signal (M3207+20n).
(6) Servo error code register (D8+20n) \(\qquad\) Data from the PCPU to the SCPU
(a) This register stores the relevant error code (see Appendix 2.4) when a servo error occurs.
If another servo error occurs, the previous error code is overwritten by the new error code.
(b) Servo error codes can be cleared by a servo error reset signal (M3208+20n).
(7) Zeroing second travel value register (D9+20n) \(\qquad\) Data from the PCPU to the SCPU
If the position at which motion stops in accordance with the travel value setting (see Section 7.21) after the proximity dog has been switched ON by a peripheral device is not the zero point, the servo system CPU will initiate a second travel to the zero point. The travel value for travel to the zero point during this second operation is stored in this register (with no sign appended). When the feedback pulse count of the motor connected is 131072 PLS, the value found by dividing the second travel value to home position by 10 is stored.
Note that in the case of a data set type zeroing operation, the data remains unchanged (the previous value stands).
(8) Travel value after proximity dog comes ON register
(D10+20n, D11+20n) \(\qquad\) Data from the PCPU to the SCPU
(a) When a zeroing operation is performed, the travel value from the point where the proximity dog comes ON to the point where the zeroing operation is completed is stored in this register (with no sign appended).
(b) In speed/position switching control, the travel value during position control is stored in this register (with no sign appended).
(9) Executed program number register (D12+20n) Data from the PCPU to the SCPU
(a) The program number of the program being executed is stored in this register when the SVST instruction is executed.
(b) In JOG operation and manual pulse generator operation, the values indicated below are stored in this register.
1) JOG operation \(\qquad\) FFFF
2) Manual pulse generator operation FFFE
3) When the power is turned on. FF00
(c) When either of the following is being executed by a peripheral device in the test mode, FFFD is stored in this register.
1) A zeroing
2) A position loop gain or position control gain 1 check in servo diagnosis.
(10) M-code register (D13+20n) \(\qquad\) .Data from the PCPU to the SCPU
(a) The M-code \({ }^{\left({ }^{(N o t e)} \text { set for the executed servo program is stored in this }\right.}\) register when positioning starts. If no M -code is set for the servo program, the value stored is " 0 ".
(b) If positioning is started by a means other than a servo program, the existing value does not change.
(c) The stored value changes to " 0 " at the leading edge of the PLC READY signal (M2000).

\section*{REMARK}
(Note): See the following sections for details on M-codes and reading M-codes.
- M-code \(\qquad\) Section 8.2
- M-code readingAppendix 4.1
(11) Torque limit value register (D14+20n) \(\qquad\) Data from the PCPU to the SCPU This register stores the value for the torque limit imposed on the servo system. The default value of \(300 \%\) is stored in this register when the power to the servo system is turned on or at the leading edge of the PLC READY signal (M2000).
(12) Constant-speed control data set pointer (D15+20n) Data from the PCPU to the SCPU
This pointer is used in constant-speed control when specifying positioning data indirectly and substituting positioning data during operation. It stores a "point" that indicates which of the values stored in indirect devices has been input to the PCPU when positioning is being repeated by using a repeat instruction (FOR-TIMES, FOR-ON, FOR-OFF).
Use this pointer in conjunction with the PLC set pointer (controlled by the user in the sequence program) - which indicates the extent to which the positioning data has been updated by the SCPU - to confirm which positioning data is to be updated.
The use of the data set pointer and PLC set pointer for constant-speed control is explained here using the example servo program below.

The input of positioning data to the PCPU on updating the positioning data in indirect devices D0 to D6 when 2-axes constant-speed control is executed using the servo program shown above is described overpage.
[Input of positioning data to the PCPU]

The internal processing for the operation shown above is described overpage.
(a) On starting the operation, the positioning data of points 0 to 6 ((1) to (14)) is input to the PCPU.
At this time, the last point of the data to be input - which is point "6" - is stored in the data set pointer for constant-speed control.
The "6" stored in the data set pointer for constant-speed control indicates that updating of the positioning data stored in points 0 to 6 is possible.
(b) The positioning data of points 0 and \(1((A)\) to (D)) is updated in accordance with the sequence program.
The last positioning data to be rewritten - which is the data of point "1" - is stored in the PLC set pointer (which must be controlled by the user in the sequence program). Updating of positioning data of points 2 to 6 (data (5) to (14)) remains possible.
(c) On completion of the positioning for point 0 , the value in the data set pointer for constant-speed control is automatically incremented by one to "7". At this time, the positioning data of point 0 ((1) to (2)) is discarded and the positioning data for point \(7((15)\) to (16)) is input to the PCPU.
(d) Hereafter, each time the positioning for a point is completed, the positioning data shifts one place.
The positioning data that can be updated is the data after that indicated by the PLC set pointer: this is the data which has not yet been input to the PCPU. Consequently, after completion of the positioning corresponding to point 3, even if the values stored in indirect devices D8 and D10 are updated by the sequence program, the point 2 positioning data that is input to the PCPU will not be updated and the second positioning will be executed using the unupdated data.
In other words, the data set pointer for constant-speed control is a pointer that indicates data that has not yet been input to the PCPU and can be updated by the sequence program.

\section*{POINT}

Number of points that can be defined by a repeat instruction
- Create a subprogram to create at least eight points.
- If there are less than eight points and these include pass points with small travel values, the positioning at each point may be completed, and the data input to the PCPU, before the data has been updated by the sequence program.
- Create a sufficient number of points to ensure that data will not be input to the PCPU before the SCPU has updated the values in the indirect devices.
(13) Travel value change register (D16+20n, D17+20n) \(\qquad\) Data from the SCPU to the PCPU
This is the area used when the position control travel value is changed in speed/position switching control (see Section 7.14).
(14) Real current value when STOP is input register
(D18+20n, D19+20n) \(\qquad\) .Data from the PCPU to the SCPU
This register stores the real current value when a STOP signal is input from an external source.

\section*{3. POSITIONING SIGNALS}

\subsection*{3.2.2 Control change registers}

The control change data storage area stores JOG operation speed data.
Table 3.1 Control Change Data Storage Area List
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name & Axis 1 & Axis 2 & Axis 3 & Axis 4 & Axis 5 & Axis 6 & Axis 7 & Axis 8 \\
\hline \multirow{7}{*}{\begin{tabular}{c}
JOG speed \\
setting \\
register
\end{tabular}} & D641, D640 & D643, D642 & D645, D644 & D647, D646 & D649, D648 & D651, D650 & D653, D652 & D655, D654 \\
\cline { 2 - 9 } & Axis 9 & Axis 10 & Axis 11 & Axis 12 & Axis 13 & Axis 14 & Axis 15 & Axis 16 \\
\cline { 2 - 9 } & Axis 17 & Axis 18 & Axis 19 & Axis 20 & Axis 21 & Axis 22 & Axis 23 & Axis 24 \\
\cline { 2 - 9 } & D673, D672 & D675, D674 & D677, D676 & D679, D678 & D681, D680 & D683, D682 & D685, D684 & D687, D686 \\
\cline { 2 - 9 } & Axis 25 & Axis 26 & Axis 27 & Axis 28 & Axis 29 & Axis 30 & Axis 31 & Axis 32 \\
\cline { 2 - 9 } & D689, D688 & D691, D690 & D693, D692 & D695, D694 & D697, D696 & D699, D698 & D701, D700 & D703, D702 \\
\hline
\end{tabular}

\section*{POINT}
- Since a current value change/speed change is made commandable by the CHGA/CHGV instruction, there are no current value change registers/speed change registers.
(1) JOG speed setting registers (D640+2n) Data from SCPU to PCPU
(a) These registers store JOG speed for JOG operation.
(b) The JOG speed setting ranges are indicated below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Item Unit } & \multicolumn{2}{|c|}{mm} & \multicolumn{2}{c|}{ inch } & \multicolumn{2}{c|}{ degree } & \multicolumn{2}{c|}{ PULSE } \\
\cline { 2 - 9 } & Setting range & Unit \\
\hline JOG speed & 1 to 600000000 & \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) & 1 to 600000000 & \(\times 10^{-3} \mathrm{inch} / \mathrm{min}\) & \begin{tabular}{c}
1 to \\
2147483647
\end{tabular} & \begin{tabular}{c}
\(\times 10^{-3}\) degree \\
\(/ \mathrm{min}\)
\end{tabular} & 1 to 10000000 & PLS/s \\
\hline
\end{tabular}
(c) The JOG speed is the value stored in the JOG speed setting registers on the leading edge (OFF to ON) of the JOG start signal.
The JOG speed cannot be changed if data is changed during JOG operation.
(d) Refer to Section 7.19 for details of JOG operation.

\subsection*{3.2.3 Common devices}
(1) JOG operation simultaneous start axis setting registers (D710 to D713) \(\qquad\) Data from SCPU to PCPU
(a) These registers are used to set the axis No. and directions of the axis whose JOG operation will be started simultaneously.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & b15 & b14 & b13 & b12 & b11 & b10 & b9 & b8 & b7 & b6 & b5 & b4 & b3 & b2 & b1 & b0 & \\
\hline D710 & \begin{tabular}{|c}
Axis \\
16 \\
\hline
\end{tabular} & Axis & \begin{tabular}{|c|}
Axis \\
14
\end{tabular} & Axis
13 & \begin{tabular}{|c|}
Axis \\
12 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
Axis \\
11 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
Axis \\
10 \\
\hline
\end{tabular} & \begin{tabular}{|c}
Axis \\
9
\end{tabular} & \begin{tabular}{|c}
Axis \\
8 \\
\hline
\end{tabular} & \begin{tabular}{|c}
Axis \\
7 \\
\hline
\end{tabular} & Axis & \begin{tabular}{|c}
Axis \\
5
\end{tabular} & \begin{tabular}{|c}
Axis \\
4
\end{tabular} & \begin{tabular}{|c}
Axis \\
3
\end{tabular} & Axis & Axis & \multirow[t]{2}{*}{Forward rotation JOG} \\
\hline D711 & \begin{tabular}{|c|}
\hline Axis \\
32 \\
\hline
\end{tabular} & \begin{tabular}{c}
Axis \\
31 \\
\hline
\end{tabular} & \begin{tabular}{|c}
Axis \\
30 \\
\hline
\end{tabular} & Axis

29 & \begin{tabular}{c}
Axis \\
\\
28 \\
\hline
\end{tabular} & \begin{tabular}{c}
11 \\
Axis \\
27 \\
\hline
\end{tabular} & Axis

26 & \begin{tabular}{|c|}
Axis \\
25 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
Axis \\
24 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
Axis \\
23 \\
\hline
\end{tabular} & |ca \begin{tabular}{|c}
Axis \\
22 \\
\hline
\end{tabular} & \[
\begin{array}{|c|}
\hline \text { Axis } \\
21 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
20 \\
\hline
\end{array}
\] & Axis & \begin{tabular}{|c|}
Axis \\
18
\end{tabular} & \begin{tabular}{|c|}
Axis \\
17 \\
\hline
\end{tabular} & \\
\hline D712 & \begin{tabular}{|c}
\hline Axis \\
16 \\
\hline
\end{tabular} & Axis & \begin{tabular}{|c}
Axis \\
14
\end{tabular} & Axis
13 & \begin{tabular}{|c|}
\hline Axis \\
12 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
Axis \\
11 \\
\hline
\end{tabular} & \[
\begin{gathered}
\text { Axis } \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { Axis } \\
9
\end{array}
\] & \[
\begin{array}{c|}
\hline \text { Axis } \\
8
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
7 \\
\hline
\end{array}
\] & \begin{tabular}{|c|c}
Axis \\
6
\end{tabular} & \[
\begin{array}{c|}
\hline \text { Axis } \\
5
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{c|}
\hline \text { Axis } \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
1 \\
\hline
\end{array}
\] & \multirow[t]{3}{*}{\begin{tabular}{l}
Reverse \\
rotation JOG
\end{tabular}} \\
\hline \multirow[t]{2}{*}{D713} & \[
\begin{gathered}
\text { Axis } \\
32 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
31 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
30 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
29 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
28 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
27 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
26 \\
\hline
\end{array}
\] & \[
\begin{array}{c|}
\hline \text { Axis } \\
25 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
24 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
23 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Axis } \\
22 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
21 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
20 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
19 \\
\hline
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { Axis } \\
18 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
17 \\
\hline
\end{array}
\] & \\
\hline & \multicolumn{16}{|r|}{\begin{tabular}{l}
Make JOG operation simultaneous start axis setting with \(1 / 0\). \\
1 : Simultaneous start executed \\
0 : Simultaneous start not executed
\end{tabular}} & \\
\hline
\end{tabular}
(b) Refer to Section 7.19 .3 for details of simultaneous JOG operation start.
(2) Manual pulse generator-controlled axis No. setting registers (D714 to D719). Data from SCPU to PCPU
(a) These registers store the axis No. which will be controlled by manual pulse generators.

(b) Refer to Section 7.20 for details of manual pulse generator operation.
(3) Manual pulse generator 1-pulse input magnification setting registers (D720 to D751)... Data from SCPU to PCPU
(a) This register is used to set the magnification (1 to 100) per pulse of the input pulse count from the manual pulse generator for manual pulse generator operation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1-Pulse Input Magnification Setting Register & Corresponding Axis No. & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & 1-Pulse Input Magnification Setting Register & Corresponding Axis No. & \begin{tabular}{l}
Setting \\
Range
\end{tabular} \\
\hline D720 & Axis 1 & \multirow{16}{*}{1 to 100} & D736 & Axis 17 & \multirow{16}{*}{1 to 100} \\
\hline D721 & Axis 2 & & D737 & Axis 18 & \\
\hline D722 & Axis 3 & & D738 & Axis 19 & \\
\hline D723 & Axis 4 & & D739 & Axis 20 & \\
\hline D724 & Axis 5 & & D740 & Axis 21 & \\
\hline D725 & Axis 6 & & D741 & Axis 22 & \\
\hline D726 & Axis 7 & & D742 & Axis 23 & \\
\hline D727 & Axis 8 & & D743 & Axis 24 & \\
\hline D728 & Axis 9 & & D744 & Axis 25 & \\
\hline D729 & Axis 10 & & D745 & Axis 26 & \\
\hline D730 & Axis 11 & & D746 & Axis 27 & \\
\hline D731 & Axis 12 & & D747 & Axis 28 & \\
\hline D732 & Axis 13 & & D748 & Axis 29 & \\
\hline D733 & Axis 14 & & D749 & Axis 30 & \\
\hline D734 & Axis 15 & & D750 & Axis 31 & \\
\hline D735 & Axis 16 & & D751 & Axis 32 & \\
\hline
\end{tabular}
(b) Refer to Section 7.20 for details of manual pulse generator operation.
(4) Manual pulse generator smoothing magnification setting area (D752 to D754) Data from SCPU to PCPU
(a) These devices are used to set the smoothing time constants of manual pulse generators.
\begin{tabular}{|c|c|}
\hline Manual Pulse Generator Smoothing Magnification Setting Register & Setting Range \\
\hline Manual pulse generator 1 (P1) : D752 & \multirow{3}{*}{0 to 59} \\
\hline Manual pulse generator 2 (P2) : D753 & \\
\hline Manual pulse generator 3 (P3) : D754 & \\
\hline
\end{tabular}
(b) When the smoothing magnification is set, the smoothing time constant is as indicated by the following expression.
Smoothing time constant \((\mathrm{t})=(\) smoothing magnification +1\() \times 56.8[\mathrm{~ms}]\)
(c) Operation

Manual pulse
generator input

Manual pulse generator enable flag (M2051)
(

Output speed \((\mathrm{V} 1)=(\) number of input pulses \(/ \mathrm{ms}) \times(\) manual pulse
generator 1-pulse input magnification setting)
Travel value \((\mathrm{L})=(\) travel value per pulse \() \times\) number of input pulses \(\times\) (manual pulse generator 1-pulse input magnification setting)

\section*{REMARKS}
1) The travel value per pulse of the manual pulse generator is as indicated below.
- Setting unit
\[
\begin{array}{ll}
& \text { mm } \\
\text { _inch } & : 0.1 \mu \mathrm{~m} \\
\text { _ degree } & : 0.00001 \text { inch } \\
\text { PPULSE } & : 1 \mathrm{PLS}
\end{array}
\]
2) The smoothing time constant is 56.8 ms to 3408 ms .
(5) Limit switch output disable setting registers (D760 to D775)
(a) These registers are used to disable the external outputs of the limit switch outputs on a point by point basis. Set the corresponding bit to 1 to disable the limit switch output and turn OFF the external output.

1) Specify 1 or 0 to set each bit.

1: Disable \(\cdots \cdots\) Limit switch output remains OFF.
0 : Enable …… Limit switch output turns ON/OFF based on set data.
2) "LY" in LYOO to LYFF indicates limit switch output.
(6) Limit switch output status storage registers (D776 to D791) \(\qquad\) Data from PCPU to SCPU
(a) The output states (ON/OFF) of the limit switch outputs set on the peripheral device and output to the AY42 are stored in terms of 1 and 0.
- ON .. 1
- OFF .. 0
(b) These registers can be used to export the limit switch output data in the sequence program, for example.

\section*{REMARK}

LY in LY \(\square \square\) of D776 to D791 indicates limit switch output.
(7) Servo amplifier type (D792 to D799) \(\qquad\) Data from PCPU to SCPU
The servo amplifier types set in system settings are stored when the servo system CPU control power supply (A6 \(\square \mathrm{P}\)) is switched on or reset.

\section*{3. POSITIONING SIGNALS}

\subsection*{3.3 Special Relays (SP.M)}

The servo system CPU has 256 special relay points from M9000 to M9255. Of there, the 7 points from M9073 to M9079 are used for positioning control, and their applications are indicated in Table 3.2.

Table 3.2 Special Relays
\begin{tabular}{|c|c|c|c|c|}
\hline Device No. & Signal Name & Signal Direction & Refresh Cycle & Fetch Cycle \\
\hline M9073 & PCPU WDT error flag & \multirow{7}{*}{PCPU \(\rightarrow\) SCPU} & \multirow{7}{*}{END} & \multirow[t]{7}{*}{Cll} \\
\hline M9074 & PCPU REDAY-completed flag & & & \\
\hline M9075 & In-test-mode flag & & & \\
\hline M9076 & External emergency stop input flag & & & \\
\hline M9077 & Manual pulse generator axis setting error flag & & & \\
\hline M9078 & Test mode request error flag & & & \\
\hline M9079 & Servo program setting error flag & & & \\
\hline
\end{tabular}
(1) WDT error flag (M9073) \(\qquad\) Signal sent from PCPU to SCPU This flag comes ON when a "watchdog timer error" is detected by the PCPU's self-diagnosis function.
When the PCPU detects a WDT error, it executes an immediate stop without deceleration on the driven axis.
When the WDT error flag has come ON, reset the servo system CPU with the key switch.
If M9073 remains ON after resetting, there is a fault at the PCPU side.
The error cause is stored in the PCPU error cause storage area (D9184) (see Section 3.5.2).
(2) PCPU REDAY-completed flag (M9074). \(\qquad\) Signal sent from PCPU to SCPU This flag is used to determine whether the PCPU is normal or abnormal from the sequence program.
(a) When the PLC READY flag (M2000) turns from OFF to ON, the fixed parameters, servo parameters, limit switch output data, etc., are checked, and if no error is detected the PCPU READY-completed flag comes ON. The servo parameters are written to the servo amplifiers and the M-codes are cleared.
(b) When the PLC READY flag (M2000) goes off, the PCPU READY-completed flag also goes OFF

(3) In-test-mode(M9075) \(\qquad\) Signal from PCPU to SCPU
(a) This flag is used to determine whether or not a test mode established from a peripheral device is currently effective. Use it, for example, for an interlock effective when starting a servo program with the SVST instruction in the sequence program.
- ONWhen the test mode is not in effect
- OFF When the test mode is in effect
(b) If a test mode request is issued from a peripheral device but the test mode is not established, the test mode request error flag (M9078) comes ON.
(4) External emergency stop input flag (M9076)Signal from PCPU to SCPU This flag is used to check the ON or OFF status of external emergency stop signal input at the EMG terminal.
- ON........External emergency stop input is ON
- OFF External emergency stop input is OFF
(5) Manual pulse generator axis setting error flag (M9077) Signal sent from PCPU to SCPU
(a) This flag is used to determine whether the setting in the manual pulse generator axis setting register (D714 to D719) is normal or abnormal.
- ONWhen D714 to D719 is normal
- OFF When D714 to D719 is abnormal
(b) When M9077 comes ON, the error contents are stored in the manual pulse generator axis setting error register (D9185 to D9187).
(6) Test mode request error flag (M9078) \(\qquad\) Signal sent from PCPU to SCPU
(a) This flag comes ON if the test mode is not established when a test mode request is sent from a peripheral device
(b) When M9078 comes ON, the error contents are stored in the test mode request error register (D9182, D9183).

\section*{POINTS}
(1) When an emergency stop signal (EMG) is input during positioning, the feed current value is advanced within the rapid stop deceleration time set in the parameter block. At the same time, the servo OFF status is established because the all axes servo start command (M2042) goes OFF. When the rapid stop deceleration time has elapsed after input of the emergency stop signal, the feed current value returns to the value at the point when the emergency stop was initiated.
(2) If the emergency stop is reset before the emergency stop deceleration time has elapsed, a servo error occurs.
(3) If you do not want to establish the servo ON status immediately after an emergency stop has been reset, include the following section in the sequence program.

(7) Servo program setting error flag (M9079) \(\qquad\) Signal from PCPU to SCPU This flag is used to determine whether the positioning data of the servo program designated by the SVST instruction is normal or abnormal.
- OFF Normal
- ON........ Abnormal

\section*{3. POSITIONING SIGNALS}

\subsection*{3.4 Special Register (SP.D)}

A servo system CPU has 256 special register points from D9000 to D9255. Of these, the 20 points from D9180 to D9199 are used for positioning control. The special registers used for positioning are shown in the table below (for the applications of special registers other than D9180 to D9199, see Appendix 3.2.)

Table 3.3 Special Register List

(1) Test mode request error information (D9182, D9183) \(\qquad\) Data from PCPU to SCPU
If there are starting axis at a test mode request from the peripheral device, a test mode request error occurs, the error flag (M9078) turns ON, and the starting/stopping data of the corresponding axis are stored.

(2) PCPU error cause(D9184) \(\qquad\) Data from the PCPU to the SCPU This register is used to identify the nature of errors occurring in the PCPU part of the sequence program.

(3) Manual pulse generator axis setting error information (D9185 to D9187). \(\qquad\) Data from PCPU to SCPU If an error is found by the set data check made on the leading edge of the manual pulse generator enable signal, the following error information is stored into D9185 to D9187 and the manual pulse generator axis setting error flag (M9077) turns ON.

(4) Error program No. (D9189) \(\qquad\) Data from the PCPU to the SCPU
(a) When an error occurs at servo program operation (SVST instruction), stores the number of the subprogram (range: 0 to 4095) affected by the error when the subprogram setting error flag (M9079) comes ON.
(b) If, once an error program number has been stored, an error occurs in another servo program, the program number of the subprogram with the new error is stored.
(5) Error item information (D9190) \(\qquad\) Data from the PCPU to the SCPU The servo program setting error flag (M9079) comes ON and the error code that corresponds to the error is stored in this device.
For details of servo program setting errors, see Appendix 2-1.
(6) Servo amplifier loading information
(D9191 to D9192). \(\qquad\) .Data from PCPU to SCPU
When the servo system CPU control power supply (A6 \(\square \mathrm{P}\)) is switched on or reset, the servo amplifier and option slot loading states are checked and its results are stored.
The axis which turned from non-loading to loading status after power-on is handled as loaded. However, the axis which turned from loading to non-loading status remains as loaded.

(a) Servo amplifier installation status
1) Installed/not installed status
- "installed" status............... The MR- \(\square\)-B is normal (i.e. communication with the servo amplifier is normal)
- "not installed" status......... No servo amplifier is installed.

The servo amplifier power is OFF.
Normal communication with the servo amplifier is not possible due, for example, to a connecting cable fault.
2) The system settings and servo amplifier installation statuses are indicated below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ System Settings } & \multicolumn{2}{|c|}{ ADU } & \multicolumn{2}{c|}{ MR- \(\square\)-B } \\
\cline { 2 - 5 } & Loaded & Not loaded & Loaded & Not loaded \\
\hline Used (axis No. setting) & 1 is stored & Major error & 1 is stored & 0 is stored \\
\hline Unused & 0 is stored & 0 is stored & 0 is stored & 0 is stored \\
\hline
\end{tabular}
(7) PC link communication error code (D9196)

When an error occurs during PC link communication, the error code that corresponds to the error is stored in this device.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
PC Communication Error Code \\
Storage Register
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline & 00: No error \\
& 01: Receiving timing error \\
& 02: CRC error \\
& 03: Communication response code error \\
& 04: Receiving flame error \\
& 05: Communication task start error \\
& (Each error code is reset to 00 when \\
& normal communication is restarted.) \\
\hline
\end{tabular}

For details of PC link communication errors, see Appendix 2.5.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.1 System Settings}
(1) System settings such as base unit selection, unit allocation, axis number setting in programs, servo motor setting (model name), and servo amplifier setting (model name) are made according to the actual system. (No settings are required when the unit is used as a PLC extension base.)
(2) Data settings and modifications can be made interactively for some peripheral devices.
(3) When you set the "MR-J2S series" or "MR-H large-capacity series" for the servo amplifier, set the "automatic motor series" and automatic for the servo motor.

\section*{4．PARAMETERS FOR POSITIONING CONTROL}

\section*{4．2 Fixed Parameters}
（1）The fixed parameters are set for each axis and their data is fixed in accordance with the mechanical system or other factors．
（2）The fixed parameters are set with a peripheral device．
（3）The fixed parameters to be set are shown in Table 4．1．

Table 4．1 Fixed Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No．} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{Expla－ natory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting & Units & Setting Range & Units & Setting & Units & Setting & Units & & & & \\
\hline 1 & Unit setting & 0 & － & 1 & － & 2 & － & 3 & － & 3 & － & －Set the command unit in positioning control for each axis． & － \\
\hline 2 & \multirow[t]{2}{*}{} & \multicolumn{8}{|c|}{1 to 65535 PLS} & 20000 & PLS & －Set the number of feedback pulses per motor revolution， which is determined by the mechanical system． & \multirow{3}{*}{4．2．1} \\
\hline 3 & & 0.1 to 6553.5 & \(\mu \mathrm{m}\) & \begin{tabular}{l}
0.00001 to \\
0.65535
\end{tabular} & inch & 0.00001
to
0.65535 & degree & 1 to 65535 & PLS & 20000 & PLS & －Set the travel value per motor revolution，which is determined by the mechanical system． & \\
\hline 4 & \[
\begin{array}{|l|l|}
\hline \stackrel{⿳ 亠 二 口 刂 土}{*} & \begin{array}{l}
\text { Unit } \\
\text { magnifica- } \\
\text { tion (Aм) }
\end{array} \\
\hline
\end{array}
\] & \multicolumn{6}{|c|}{1：\(\times 1,10: \times 10,100: \times 100,1000: \times 1000\)} & － & － & － & － & －Set to change the magnification for the travel value per pulse． & \\
\hline 5 & Backlash compensation amount （Note） & 0 to 6553.5 & \(\mu \mathrm{m}\) & 0 to 0.65535 & inch & \[
\begin{gathered}
0 \text { to } \\
0.65535
\end{gathered}
\] & degree & 0 to 65535 & PLS & 0 & PLS & \begin{tabular}{l}
－Set the amount of backlash in the machine． \\
－Every time the positioning direction changes during positioning，compensation by the backlash compensation amount is executed．The expression below shows the setting range． \(0 \leq\)（backlash compensation amount）\(\times\) AP／AL • AM \(\leq 65535\)
\end{tabular} & 8.3 \\
\hline 6 & Upper stroke limit（Note） & \[
\begin{array}{|c}
-214748364.8 \\
\text { to } \\
214748364.7
\end{array}
\] & \(\mu \mathrm{m}\) & \[
\begin{array}{|c}
-21474.83648 \\
\text { to } \\
21474.83647
\end{array}
\] & inch & \[
\begin{gathered}
0 \text { to } \\
359.99999
\end{gathered}
\] & degree & \[
\begin{gathered}
-2147483648 \\
\text { to } \\
2147483647
\end{gathered}
\] & PLS & 2147483647 & PLS & \begin{tabular}{l}
－Set the upper limit for the machine travel value．The expression below shows the setting range． \\
（SV13 only）-2147483648 \(\leq\)（upper stroke limit）\(\times\)
\(\qquad\)
\end{tabular} & \\
\hline 7 & Lower stroke limit（Note） & \[
\begin{array}{|c}
-214748364.8 \\
\text { to } \\
214748364.7
\end{array}
\] & \(\mu \mathrm{m}\) & \[
\begin{array}{|c}
-21474.83648 \\
\text { to } \\
21474.83647
\end{array}
\] & inch & \[
\begin{gathered}
0 \text { to } \\
359.99999
\end{gathered}
\] & degree & \[
\begin{gathered}
-2147483648 \\
\text { to } \\
2147483647
\end{gathered}
\] & PLS & 0 & PLS & －Set the lower limit for the machine travel value．The expression below shows the setting range． （SV13 only）－2147483648 \(\leq\)（lower stroke limit）\(\times\) AP／AL • AM \(\leq 2147483647\) & 4．2．2 \\
\hline 8 & Command in－position range（Note） & \[
\begin{array}{|c|}
0.1 \text { to } \\
214748364.7
\end{array}
\] & \(\mu \mathrm{m}\) & \[
\begin{gathered}
0.00001 \text { to } \\
21474.83647
\end{gathered}
\] & inch & \[
\left|\begin{array}{c}
0.00001 \\
\text { to } \\
359.99999
\end{array}\right|
\] & degree & \[
\begin{gathered}
1 \text { to } \\
2147483647
\end{gathered}
\] & PLS & 100 & PLS & －Set the position at which the command in－position signal（M1603＋ \(20 n / \mathrm{Xn} 3 / \mathrm{M} 2403+20 \mathrm{n}\) ）is turned ON［（positioning address）－（current value）］． The expression below shows the setting range． \(1 \leq\)（command in－position range）\(\times \mathrm{AP} / \mathrm{AL} \cdot \mathrm{AM} \leq\) 32767 & 4．2．3 \\
\hline 9 & Limit switch output used／not used & & & & \[
\begin{aligned}
& 0 \text { : Not u } \\
& \text { 1: used }
\end{aligned}
\] & & & & & 0 & － & －Set whether the limit switch output function is used or not for each axis． & 8.1 \\
\hline
\end{tabular}
（Note）：The display of the possible setting range differs according to the electronic gear value．

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.2.1 Setting the number of pulses per revolution / travel value per revolution / unit magnification}

This section explains how to set the number of pulses per revolution, the travel value per revolution, and the unit magnification.
(1) Setting method 1
(a) Finding the smallest position resolution (\(\Delta \mathrm{l}\)).

The smallest position resolution \((\Delta l)\) is determined by the travel value per revolution \((\Delta S)\) and the number of encoder feedback pulses (Pf).
\[
\Delta 1=\frac{\Delta \mathrm{S}}{\mathrm{Pf}}
\]
(b) Finding the unit magnification (Ам)

Find the unit magnification on the basis of \(\Delta l\) determined as described in (a) above. However, make sure that the smallest command unit is not smaller than \(\Delta l\).
(For unit setting [mm])
\begin{tabular}{|c|c|c|}
\hline\(\Delta l\) found in (a) [mm] & Smallest Command Unit [mm] & Unit Magnification (Am) \\
\hline \(0.00001<\Delta \mathrm{l} \leq 0.0001\) & 0.0001 & 1 \\
\hline \(0.0001<\Delta \mathrm{l} \leq 0.001\) & 0.001 & 10 \\
\hline \(0.001<\Delta \mathrm{l} \leq 0.01\) & 0.01 & 100 \\
\hline \(0.01<\Delta \mathrm{l} \leq 0.1\) & 0.1 & 1000 \\
\hline
\end{tabular}
[Example] Assuming that the travel value per revolution \((\Delta \mathrm{S})\) is 10 [mm] and the number of encoder feedback pulses (Pf) is 8192 [PLS/rev]:
\(\Delta 1=\frac{10[\mathrm{~mm}]}{8192[\mathrm{PLS} / \mathrm{rev}]}=0.00122 \rightarrow 0.001<0.00122 \leq 0.01\)
This means that the smallest command unit is 0.01 [mm] and the unit magnification (Ам) is 100.
Therefore, 0.01 [mm] units can be specified in commands.
(c) Finding the travel value per revolution (AL).

If the unit magnification (AM) is "1", the travel value per revolution is the value of \(A L\), unchanged. If the unit magnification (Ам) is a value other than " 1 ", the travel value per revolution is the product of \(A L\) and \(A M\).
[Example] Assume that the travel value per revolution is 10 [mm] and the unit magnification is 100 :
\(A_{L}=\frac{10000.0[\mu \mathrm{~m}]}{100}=100.0[\mu \mathrm{~m}]\)
Accordingly, \(100.0[\mu \mathrm{~m}]\) is set as the travel value per revolution (AL) in this case.
(d) Number of pulses per revolution (AP)

Set the number of feedback pulses per revolution of the encoder.
(e) The number of pulses per revolution, travel value per revolution, and unit magnification for the example configuration shown here are calculated below.

Gear ratio \(=Z_{1}: Z_{2}=1: 25\)

1) Travel value per feedback pulse
\(\Delta \mathrm{S}=10[\mathrm{~mm}] \times \frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=10[\mathrm{~mm}] \times \frac{1}{25}\)
\(\Delta I=\frac{\Delta S}{\mathrm{Pf}}=\frac{10[\mathrm{~mm}]}{25 \times 8192}=0.000049[\mathrm{~mm}] \ldots \rightarrow \Delta \mathrm{I}=0.0001[\mathrm{~mm}]\)
2) Unit magnification (Ам)

Since \(\Delta l\) is \(0.0001[\mathrm{~mm}\)], the unit magnification (AM) is "1".
3) Travel distance per revolution (AL)
\(\mathrm{A}_{\mathrm{L}}=\frac{10[\mathrm{~mm}] \times 1}{25}=0.4[\mathrm{~mm}]=400.0[\mu \mathrm{~m}]\)
4) Number of pulses per revolution (AP)
\(\mathrm{AP}=8192[\mathrm{PLS} / \mathrm{rev}]\)... fixed according to the encoder model.
(2) Setting method 2

If \(A L\) cannot be set by using setting method 1 , calculate the numerator and denominator of the electronic gear, and set AP as the numerator and \(A L \times A M\) as the denominator.

The electronic gear is represented by the following relational expression.
Electronic gear \(=\frac{\text { Number of feedback pulses }(\mathrm{Pf})}{\text { Travel value per revolution }(\Delta \mathrm{S})}\)
\[
=\frac{\text { Number of pulses per revolution (AP) }}{\text { Travel value per motor revolution (AL) } \times \text { unit magnification (AM) }}
\]

Example: With the example configuration shown above, and under the following conditions(e);
(Gear ratio=Z1: Z2=1:39
Ball screw pitch \(=25.4[\mathrm{~mm}]=25.4 \times 1000=25400.0[\mu \mathrm{~m}]\)
\(\begin{aligned} A_{L}=\frac{25.4[\mathrm{~mm}]}{29} & =0.65128205[\mathrm{~mm}] \\ & =651.28205[\mu \mathrm{~m}]\end{aligned}\)
and AL cannot be set, calculate as follows....
Electronic gear
Elecronic gear
\(=\frac{\mathrm{Pf}}{\Delta \mathrm{S}} \times \frac{8192[\mathrm{PLS}]}{25.4[\mathrm{~mm}] \times 1000 \times \frac{1}{39}}=\frac{319488}{25400.0[\mu \mathrm{~m}]} \cdots \cdot \mathrm{AL}^{2} \times \mathrm{AM}_{M}\)
Here, since the setting range of \(A P\) is 1 to 65535 [PLS] and that of \(A L\) is 0.1 to \(6553.5[\mu \mathrm{~m}]\), reduce them to within their setting ranges.
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{19968}{1587.5}\)

Thus,

\footnotetext{
\(\mathrm{AP}=19968[\mathrm{PLS}]\)
\(\mathrm{AL}(\) Note \()=1587.5[\mu \mathrm{~m}] \ldots\) and set the following values
AM=1
}

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.2.2 Upper stroke limit value/lower stroke limit value}

These are the settings for the upper limit value and lower limit value in the travel range of the mechanical system.

Fig. 4.1 Travel Range When Setting the Upper Stroke Limit Value and Lower Stroke Limit Value
(1) Stroke limit range check

The stroke limit range check is executed when the operations indicated in the table below are started or while they are in progress.
\begin{tabular}{|c|c|c|}
\hline Operation Started & Check Executed/ Not Executed & Remarks \\
\hline Positioning control & Executed & \begin{tabular}{l}
- When positioning is started, it is checked whether the feed current value is within the stroke limit range or not. If it outside the range, an error occurs (error code 106) and positioning is not executed. \\
- When circular interpolation is in progress, if the interpolation path goes outside the stroke limit range, an error occurs (error codes: 207, 208) and axis motion decelerates to a stop.
\end{tabular} \\
\hline Fixed-pitch feed control & Executed & - \\
\hline \begin{tabular}{l}
Speed control (I) \\
Speed control (II)
\end{tabular} & Not executed & - The current value becomes " 0 ", and motion continues until the external limit signal (FLS, RLS, STOP) is received. \\
\hline Speed/position switching control (including restart) & Executed & - The check is executed after the switch to position control. \\
\hline JOG operation & Executed & - If the current value goes outside the stroke limit range, motion stops. Travel in the direction that returns the axis into the stroke range is possible. \\
\hline Speed switching control & Executed & [-[\\
\hline Constant-speed control & Executed & - \\
\hline Position follow-up control & Executed & - While positioning is in progress, it is checked whether the feed current value is within the stroke limit range. If it outside the range, an error occurs (error code 106) and positioning is not executed. \\
\hline Manual pulse generator operation & Executed & - If the current value goes outside the stroke limit range, motion stops. \\
\hline
\end{tabular}

\section*{POINTS}
(1) Besides setting the stroke limit upper limit value/lower limit value in the fixed parameters, the stroke limit range can also be set by using the external limit signals (FLS, RLS).
(2) When the external limit signal goes OFF, a deceleration stop is executed. The time taken to decelerate to a stop can be set by setting the "deceleration time" and "rapid stop deceleration time" in the parameter block.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.2.3 Command in-position range}

The command in-position is the difference between the positioning address (command position) and feed current value.
Once the value for the command in-position has been set, the command inposition signal (\(\mathrm{M} 2403+20 \mathrm{n}\)) will come ON when the difference between the command position and the feed current value enters the set range [(command position - feed current value) \(\leq\) (command in-position range)].
The command in-position range check is executed continuously during positioning control.

\subsection*{4.3 Servo Parameters}
(1) The servo parameters are parameters set for each axis: their settings are data fixed by the specifications of the controlled motors and data required to execute servo control.
(2) The servo parameters are set with a peripheral device.
\begin{tabular}{|l}
\hline \\
\hline After setting the servo parameters at a peripheral device, execute a "RELATIVE CHECK" and \\
execute positioning control in the "NO ERROR" status. If there is an error, check the relevant \\
points indicated in this manual and reset it.
\end{tabular}

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.1 Servo parameters of ADU (only when A273UHCPU is used)}

Tables 4.2 and 4.3 indicate the servo parameters to be set.
(1) Basic parameters

Table 4.2 Servo Parameter (Basic Parameter) List
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{\begin{tabular}{l}
Expla- \\
natory \\
Section
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{\begin{tabular}{l}
Initial \\
Value
\end{tabular}} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & & & & \\
\hline (Note)
\[
1
\] & Amplifier setting & \multicolumn{11}{|l|}{} & \multirow{7}{*}{-} \\
\hline (Note)
\[
2
\]
\(\qquad\) & Regenerative resistor & \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\(\}^{\text {Not displayed on the screen. }}\)}} & \\
\hline \begin{tabular}{l}
(Note) \\
3
\end{tabular} & External dynamic brake & & & & & & & & & & & & \\
\hline (Note)
\[
4
\] & Motor type & \multicolumn{11}{|l|}{\multirow{4}{*}{Set automatically in accordance with the system settings.}} & \\
\hline (Note)
\[
5
\] & Motor capacity & & & & & & & & & & & & \\
\hline 6 & Motor rpm
\[
(\mathrm{R})
\] & & & & & & & & & & & & \\
\hline 7 & Number of feedback pulses (N) & & & & & & & & & & & & \\
\hline \[
\begin{gathered}
8 \\
\text { (Note) }
\end{gathered}
\] & \begin{tabular}{l}
Direction \\
of rotation
\end{tabular} & \begin{tabular}{l}
0: Forward \\
1: Reverse
\end{tabular} & \begin{tabular}{l}
ation \\
tation
\end{tabular} & W) when) when th & positio osition & g address address & \begin{tabular}{l}
rease \\
reases
\end{tabular} & & & 0 & - & - Set the direction of rotation as seen from the load side. Forward rotation: reverse rotation: & - \\
\hline 9 & Automatic tuning & \begin{tabular}{l}
0 : Speed o \\
1: Position \\
2: Not exec
\end{tabular} & eed & & & & & & & 2 & - & - Set the gain (speed/position, speed) for executing automatic setting. & 4.3.9 \\
\hline 10 & Servo responsive -ness & 1 to 12 & & & & & & & & 1 & - & - Set in order to increase servo responsiveness. & 4.3.10 \\
\hline
\end{tabular}
(Note-1) : If you have changed the setting of any of the items marked "Note" in the above table, reset the servo system CPU with the key switch or turn PLC ready (M2000) off, then on, and switch on servo power.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}
(2) Adjustment parameters

Table 4.3 Servo Parameter (Adjustment Parameter) List
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{Explanatory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & & & & \\
\hline 1 & Load inertia ratio & \multicolumn{8}{|l|}{0.1 to 20.0} & 3.0 & - & - Set the ratio of load inertia moment to motor inertia moment. & 4.3.8 \\
\hline 2 & Position control gain 1 & \multicolumn{8}{|l|}{Valid range 5 to \(500 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 70 & rad/s & - Make setting to increase trackability for the position command. & 4.3.3 \\
\hline 3 & Speed control gain 1 & \multicolumn{8}{|l|}{Valid range 20 to \(5000 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 1200 & rad/s & - Make setting to increase trackability for the speed command. & 4.3.4 \\
\hline 4 & Position control gain 2 & \multicolumn{8}{|l|}{Valid range 5 to \(100 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 25 & rad/s & - Make setting to increase position response for load disturbance. & 4.3.3 \\
\hline 5 & Speed control gain 2 & \multicolumn{8}{|l|}{Valid range 20 to \(8000 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 600 & rad/s & - Make setting when vibration occurs on machinery having large backlash. & 4.3.4 \\
\hline 6 & Speed integral compensation & \multicolumn{8}{|l|}{Valid range 2 to 240 rms Setting range 2 to \(240 \mathrm{rad} / \mathrm{s}\)} & 20 & ms & - Set the time constant of integral compensation. & 4.3.5 \\
\hline 7 & Notch filter & \multicolumn{8}{|c|}{-} & - & - & - Cannot be set. & - \\
\hline 8 & Feed forward gain & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 to 150\% \\
0 : Feed forward control is not executed.
\end{tabular}} & 0 & \% & - Set the feed forward coefficient for position control. & 4.3.7 \\
\hline \multirow[t]{2}{*}{9} & In-position range(SV13) (Note) & \[
\begin{gathered}
0.1 \text { to } \\
214748364.7
\end{gathered}
\] & \(\mu \mathrm{m}\) & \[
\begin{gathered}
0.00001 \\
\text { to } \\
21474.83647
\end{gathered}
\] & inch & \[
\begin{array}{|c|}
\hline 0.00001 \\
\text { to } \\
359.99999 \\
\hline
\end{array}
\] & degree & \[
\begin{gathered}
1 \text { to } \\
2147483647
\end{gathered}
\] & PLS & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{PLS} & - Set the droop pulse value of the deviation counter. & \\
\hline & In-position range(SV22) (Note) & 0.1 to 3276.7 & \(\mu \mathrm{m}\) & \[
\begin{gathered}
0.00001 \\
\text { to } \\
0.32767 \\
\hline
\end{gathered}
\] & inch & \[
\begin{gathered}
0.00001 \\
\text { to } \\
0.32767 \\
\hline
\end{gathered}
\] & degree & \[
\begin{gathered}
1 \text { to } \\
32767
\end{gathered}
\] & PLS & & & ON when droop pulses are within the setting range. & \\
\hline 10 & Electromagnetic brake sequence & \multicolumn{8}{|c|}{-} & - & - & - Cannot be set. & 4.3.12 \\
\hline
\end{tabular}
(Note) : The setting range indication varies with the electronic gear value.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.2 MR-■-B servo parameters}

The servo parameters to be set are indicated in Tables 4.4 through 4.6.
(1) Basic parameters

For the servo parameters of the MR-J2S-B, refer to the "SSCNET-Compatible MR-J2S- \(\square\) B Servo Amplifier Instruction Manual (SH-030001).

Table 4.4 Servo Parameters (Basic Parameters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{Explanatory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{\begin{tabular}{l}
Initial \\
Value
\end{tabular}} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & & & & \\
\hline \begin{tabular}{l}
(Note) \\
1
\end{tabular} & Amplifier setting & \multicolumn{11}{|l|}{\multirow{7}{*}{Set automatically in accordance with the system settings.}} & \multirow{6}{*}{-} \\
\hline (Note)
\[
2
\] & Regenerative resistor & & & & & & & & & & & & \\
\hline (Note)
\[
3
\] & External dynamic brake & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
(Note) \\
4
\end{tabular} & Motor type & & & & & & & & & & & & \\
\hline (Note) 5 & Motor capacity & & & & & & & & & & & & \\
\hline 6 & Number of motor revolution (R) & & & & & & & & & & & & \\
\hline 7 & Number of feedback pulses (N) & & & & & & & & & & & & APP. 5 \\
\hline 8 & Rotating direction & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : Forward rotation (CCW) when the positioning address increases. \\
1: Reverse rotation (CW) when the positioning address decreases.
\end{tabular}} & 0 & - & - Set the direction of rotation as seen from the load side. Forward rotation: reverse rotation: & - \\
\hline 9 & Automatic tuning & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : Speed only \\
1: Position/speed \\
2: Not executed
\end{tabular}} & 1 & - & - Set the gain (speed/position, speed) for executing automatic setting. & 4.3.9 \\
\hline 10 & Servo responsive -ness & \multicolumn{8}{|l|}{1 to 12} & 1 & - & - Set in order to increase servo responsiveness. & 4.3.10 \\
\hline
\end{tabular}
(Note-1) : After changing any of the items marked "Note" in the table above, turn the servo power supply on after resetting the servo system CPU with the key switch or turning the PLC READY signal (M2000) ON.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\section*{(2) Adjustment parameters}

Table 4.5 Servo Parameter List (Adjustment Parameters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{\begin{tabular}{l}
Expla- \\
natory \\
Section
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & & & & \\
\hline 1 & Load inertia ratio & \multicolumn{8}{|l|}{0.0 to 100.0} & \[
\begin{gathered}
3.0 \\
(\text { Note-1) }
\end{gathered}
\] & - & - Set the ratio of moment of load inertia for the motor. & 4.3.8 \\
\hline 2 & Position control gain 1 & \multicolumn{8}{|l|}{Valid range 4 to \(1000 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 70 & \(\mathrm{rad} / \mathrm{s}\) & - Set to increase the followup with respect to the position command. & 4.3.3 \\
\hline 3 & Speed control gain 1 & \multicolumn{8}{|l|}{Valid range 20 to \(5000 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 1200 & \(\mathrm{rad} / \mathrm{s}\) & - Set to increase the followup with respect to the speed command. & 4.3.4 \\
\hline 4 & Position control gain 2 & \multicolumn{8}{|l|}{Valid range 10 to \(500 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 25 & \(\mathrm{rad} / \mathrm{s}\) & - Set to increase the position response with respect to load disturbance. & 4.3.3 \\
\hline 5 & Speed control gain 2 & \multicolumn{8}{|l|}{Valid range 20 to \(5000 \mathrm{rad} / \mathrm{s}\) Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 600 & \(\mathrm{rad} / \mathrm{s}\) & - Set when vibration is generated, for example in machines with a large backlash. & 4.3.4 \\
\hline 6 & Speed integral compensation & \multicolumn{8}{|l|}{Valid range 1 to 1000 rms Setting range 1 to \(9999 \mathrm{rad} / \mathrm{s}\)} & 20 & ms & - Set the time constant for integral compensation. & 4.3.5 \\
\hline 7 & Notch filter & \multicolumn{8}{|l|}{0: Not used
1: 1125
\(2: 750\)
\(3: 562\)
\(4: 450\)
\(5: 375\)
\(6: 321\)
\(7: 281\)} & 0 & Hz & - Set the frequency for the notch filter. & 4.3.11 \\
\hline 8 & Feed forward gain & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 to \(100 \%\) \\
0 : Feed forward control is not executed.
\end{tabular}} & 0 & \% & - Set the feed forward coefficient used in positioning control. & 4.3.7 \\
\hline 9 & In-position range (Note-2) & \[
\begin{gathered}
0.1 \text { to } \\
214748364.7
\end{gathered}
\] & \(\mu \mathrm{m}\) & \[
\begin{gathered}
0.00001 \\
\text { to } \\
21474.83647
\end{gathered}
\] & inch & \[
\begin{gathered}
0.00001 \\
\text { to } \\
359.99999
\end{gathered}
\] & degree & \[
\begin{gathered}
1 \text { to } \\
2147483647
\end{gathered}
\] & PLS & 100 & PLS & \begin{tabular}{l}
- Sets the quantity of droop pulses in the deviation counter. \\
- The in-position signal is ON when the number of droop pulses is within the set range. The expression below shows the setting range. \(1 \leq\) (in-position range) \(\times\) AP/AL • AM \(\leq 32767\)
\end{tabular} & 4.3.6 \\
\hline 10 & Electromagnetic brake sequence & \multicolumn{8}{|l|}{0 to 1000 ms} & 100 & ms & - Set the time delay between actuation of the electromagnetic brake and base disconnection. & 4.3.12 \\
\hline 11 & Monitor output mode (monitor 1) & \multicolumn{4}{|l|}{\begin{tabular}{l}
(MR-H-BN) \\
0 : Speed (\(\pm\)) \\
1: Torque (\(\pm\))
\end{tabular}} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { (MR-J2S-B/MR-J2-B) } \\
& \text { 0: Speed }(\pm) \\
& \text { 1: Torque }(\pm)
\end{aligned}
\]} & 0 & - & \multirow[b]{2}{*}{- Set the monitor items output as analog outputs in real time.} & \\
\hline 12 & Monitor output mode (monitor 2) & \multicolumn{4}{|l|}{\begin{tabular}{l}
2: Speed (+) \\
3: Torque (+) \\
4: Current command output \\
5: Command F \(\Delta\) T \\
6: Droop pulse \(1 / 1\) \\
7: Droop pulse \(1 / 4\) \\
8: Droop pulse \(1 / 16\) \\
9: Droop pulse 1/32
\end{tabular}} & 2: Speed
3: Torque
4: Curren
5: Comm
6: Droop
7: Droop
8: Droop
9: Droop
10: Droop & \begin{tabular}{l}
(+) \\
(+) \\
command \\
and \(\mathrm{F} \Delta \mathrm{T}\) \\
pulse \(1 / 1\) \\
pulse 1/1 \\
pulse 1/6 \\
pulse \(1 / 2\) \\
pulse 1/
\end{tabular} & \begin{tabular}{l}
d output \\
6 \\
024
\end{tabular} & & 1 & - & & 4.3.13 \\
\hline
\end{tabular}
(Note-1) : For MR-J2S-B/MR-J2-B, the default is "7.0".
(Note-2) : The display of the possible setting range differs according to the electronic gear value.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

Table 4.5 Servo Parameter List (Adjustment Parameters) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{Explanatory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|c|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & & & & \\
\hline 13 & Optional function 1 (carrier frequency selection) & \multicolumn{8}{|l|}{\begin{tabular}{l}
\(0: 2.25 \mathrm{kHz}\) (non low-noise operation) \\
3: 9 kHz (low-noise operation)
\end{tabular}} & 0 & kHz & - Set "low noise" to improve the sound of the frequencies generated from the motor. & 4.3.14 \\
\hline 14 & Optional function 1 (Encoder type) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0: 2-wire type \\
1: 4-wire type
\end{tabular}} & 0 & - & - Set the type of encoder cable. & 4.3.14 \\
\hline 15 & Optional function 1 (external emergency stop signal) (Note-3) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : Used \\
1: Not used
\end{tabular}} & 1 & - & - To invalidate the external emergency stop signal (EMG) set "not used". & 4.3.14 \\
\hline 16 & Optional function 2 (selection of no-motor operation) (Note-4) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : Invalid \\
1: Valid
\end{tabular}} & 0 & - & - To check the status without connecting a motor, set "valid". & 4.3.15 \\
\hline 17 & Optional function 2 (electromagnetic brake interlock output timing) (Note-4) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : Regardless of the rotational speed of the servo motor, output occurs under any of the following conditions. \\
- Servo OFF \\
- Occurrence of an alarm \\
- Emergency stop input OFF (valid) \\
1: Output occurs under any of the above conditions provided that the servo motor rotational speed is zero (expansion parameters).
\end{tabular}} & 0 & - & - Set the interlock timing for the electromagnetic brake interlock signal. & 4.3.15 \\
\hline 18 & Optional function 2 (selection of microvibration suppression function) (Note-3) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0: Valid \\
1: Invalid
\end{tabular}} & 0 & - & - Set "valid" to suppress vibration on stopping. & 4.3.15 \\
\hline 19 & Optional function 2 (motor lock operation) (Note-3) & \multicolumn{8}{|l|}{\begin{tabular}{l}
0: Valid \\
1: Invalid
\end{tabular}} & 0 & - & - To carry out test operation without rotating the motor, set "valid". & 4.3.15 \\
\hline
\end{tabular}
(Note-3) : Cannot be set with MR-H-BN
(Note-4) : Cannot be set with MR-J2S-B/MR-J2-B

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\section*{(3) Expansion parameters}

Table 4.6 Servo Parameters (Expansion Parameters)

(Note-1) : Cannot be set when using MR-J2S-B/MR-J2-B.
(Note-2) : For MR-J2S-B/MR-J2-B, the default is " 1 ".

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

Table 4.6 Servo Parameters (Expansion Parameters) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{Explanatory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{\begin{tabular}{l}
Initial \\
Value
\end{tabular}} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & Setting Range & Units & Setting Range & Units & \begin{tabular}{l}
Setting \\
Range
\end{tabular} & Units & & & & \\
\hline 15 & Number of gear teeth at motor side & \multicolumn{12}{|l|}{\multirow{3}{*}{Unusable}} \\
\hline 16 & Number of gear teeth at machine side & & & & & & & & & & & & \\
\hline 17 & Number of closed encoder pulses & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{POINT}
(1) The "setting range" for position control gain 1 and 2, speed control gain 1 and 2 , and speed integral compensation can be set from a peripheral device, but if a setting outside the "valid range" is set, the following servo errors will occur when the power to the servo system CPU is turned ON, when the CPU is reset, and at the leading edge of the PLC ready signal (M2000).
\begin{tabular}{|c|l|l|}
\hline Servo Error Code & \multicolumn{1}{|c|}{ Error Contents } & \multicolumn{1}{c|}{ Processing } \\
\hline 2613 & \begin{tabular}{l}
Initial parameter error \\
(position control gain 1)
\end{tabular} & \multirow{3}{*}{\begin{tabular}{l}
Correct the setting for the \\
relevant parameter so that it is \\
within the "valid range", turn \\
M2000 from OFF to ON, or reset \\
with the reset key.
\end{tabular}} \\
\hline 2614 & \begin{tabular}{l}
Initial parameter error \\
(speed control gain 1)
\end{tabular} & \begin{tabular}{l}
Initial parameter error \\
(position control gain 2)
\end{tabular} \\
\hline 2615 & \begin{tabular}{l}
Initial parameter error \\
(speed control gain 2)
\end{tabular} & \begin{tabular}{l}
Initial parameter error \\
(speed integral compensation)
\end{tabular} \\
\hline 2617 &
\end{tabular}

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.3 Position control gain 1, 2}
(1) Position control gain 1
(a) Position control gain 1 is set in order to make the stabilization time shorter.
(b) If the position control gain 1 is too high, it could cause overshoot and the value must therefore be adjusted so that it will not cause overshoot or undershoot.

(2) Position control gain 2
(a) Position control gain 2 is set in order to increase position response with respect to load disturbance.
(b) Calculate the position control gain 2 value to be set from the load inertia ratio and the speed control gain 2.
\[
\text { Position control gain } 2=\frac{\text { Speed control gain } 2}{1+\text { load inertia ratio }} \times \frac{1}{10}
\]

\section*{POINTS}
(1) If the position control gain 1 setting is too low, the number of droop pulses will increase and a servo error (excessive error) will occur at high speed.
(2) The position control gain 1 setting can be checked from a peripheral device.
(For the method used to execute this check, refer to the operating manual for the peripheral device used.)

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.4 Position control gain 1, 2}
(1) Position control gain 1
(a) In the speed control mode

Normally, no change is necessary.
(b) In the position control mode

Set to increase the follow-up with respect to commands.
(2) Speed control gain 2
(a) Speed control gain 2 is set when vibration occurs, for example in low-rigidity machines or machines with a large backlash.
When the speed control gain 2 setting is increased, responsiveness is improved but vibration (abnormal motor noise) becomes more likely.
(b) A guide to setting position gain 2 is presented in Table 4.7 below.

Table 4.7 Guide to Speed Control Gain 2 Setting
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Load Inertia Ratio \\
\(\left(\mathrm{GDL}^{2} / \mathrm{GDM}^{2}\right)\)
\end{tabular} & \(\mathbf{1}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{2 0}\) & \begin{tabular}{c}
\(\mathbf{3 0}\) or \\
Greater
\end{tabular} & \multicolumn{1}{c|}{ Remarks } \\
\hline Set value (ms) & 800 & 1000 & 1500 & 2000 & 2000 & 2000 & \begin{tabular}{l}
Setting possible within the range 1 to 9999 \\
(valid range: 20 to 5000\()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{POINTS}
(1) When the setting for speed control gain 1 is increased, the overshoot becomes greater and vibration (abnormal motor noise) occurs on stopping.
(2) The speed control gain 1 setting can be checked from a peripheral device.
(For the method used to execute this check, refer to the operating manual for the peripheral device used.)

\subsection*{4.3.5 Speed integral compensation}
(1) This parameter is used to increase frequency response in speed control and improve transient characteristics.
(2) If the overshoot in acceleration/deceleration cannot be made smaller by adjusting speed loop gain or speed control gain, increasing the setting for the speed integral compensation value will be effective.
(3) A guide to setting the speed integral compensation is presented in Table 4.8 below.

Table 4.8 Guide to Speed Integral Compensation Setting
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Load Inertia Ratio \\
\(\left(\mathrm{GDL}^{2} / \mathrm{GDM}^{2}\right)\)
\end{tabular} & \(\mathbf{1}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{2 0}\) & \begin{tabular}{c}
\(\mathbf{3 0}\) or \\
Greater
\end{tabular} & \multicolumn{1}{c|}{ Remarks } \\
\hline Set value (ms) & 20 & 30 & 40 & 60 & 100 & 200 & \begin{tabular}{l}
Setting possible within the range 1 to 9999 \\
(valid range: 1 to 1000)
\end{tabular} \\
\hline
\end{tabular}

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.6 In-position range}
(1) The "in-position" refers to the quantity of droop pulses in the deviation counter.
(2) If an in-position value is set, the in-position signal (M2402 + 20n) will come ON when the difference between the position command and position feedback from the servomotor enters the set range.

\subsection*{4.3.7 Feed forward gain}

This parameter is used to improve the follow-up of the servo system.
The setting range is as follows:
When using an MR- \(\square\)-B \(\qquad\) .0 to 100 (\%)

\subsection*{4.3.8 Load inertia ratio}
(1) This parameter sets the ratio of moment of load inertia for the servomotor. The ratio of moment of load inertia is calculated using the equation below:
\[
\text { Ratio of moment of load inertia }=\frac{\text { Moment of load inertia }}{\text { Motor's moment of inertia }}
\]
(2) If automatic tuning is used, the result of automatic tuning is automatically set.

\subsection*{4.3.9 Automatic tuning}

This is a function whereby the moment of inertia of the load is automatically calculated, and the most suitable gain is automatically set, by sensing the current and speed when motion starts.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.10 Servo responsiveness setting}
(1) This parameter setting is used to increase servo responsiveness.

Changing the set value to a higher value in the sequence 1, \(2 \ldots, 5\) improves servo responsiveness.
For machines with high friction, use the set values in the range 8 through C .
Response settings
\(\left.\begin{array}{l}\text { 1: Low-speed response } \\
\text { 2: } \\
\text { 3: } \\
\text { 4: } \\
\text { 5: High-speed response } \\
\text { 8: Low-speed response } \\
\text { 9: } \\
\text { A: } \\
\text { B: } \\
\text { Normal machine } \\
\text { C: High-speed response }\end{array}\right\} \quad\)\begin{tabular}{l}
(MRable) \\
Machines with high friction \\
(only MR-H-BN usable)
\end{tabular}
(2) Increase the response setting step by step starting from the low-speed response setting, observing the vibration and stop stabilization of the motor and machine immediately before stopping as you do so. If the machine resonates, decrease the set value.
If the load inertia is 5 times the motor inertia, make the set value 1 or more.
(3) The figure below shows how the motor's response changes according to the servo responsiveness setting.

(4) Change the servo responsiveness setting while the motor is stopped.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.11 Notch filter}

This parameter sets the notch frequency for the notch filter.
\begin{tabular}{|c|c|}
\hline Set Value & Notch Frequency (Hz) \\
\hline 0 & Not used \\
\hline 1 & 1125 \\
\hline 2 & 750 \\
\hline 3 & 562 \\
\hline 4 & 450 \\
\hline 5 & 375 \\
\hline 6 & 321 \\
\hline 7 & 281 \\
\hline
\end{tabular}

\subsection*{4.3.12 Electromagnetic brake sequence}

This parameter sets the time delay between actuation of the electromagnetic brake and base disconnection.

\subsection*{4.3.13 Monitor output mode}

This parameter is set to output the operation status of the servo amplifier in real time as analog data.
This analog output makes it possible to check the operation status.
Number of monitored item : 2 types

\subsection*{4.3.14 Optional function 1 (carrier frequency selection)}
(1) Selection of carrier frequency

When low noise is set, the amount of electromagnetic noise of audible frequencies emitted from the motor can be reduced.
(2) Encoder type

Set the type of encoder cable used.

Carrier frequency selection
\(0: 2.25 \mathrm{kHz}\) (non low-noise)
3: 9 kHz (low-noise)
Encoder type
0: 2-wire type
1: 4-wire type

\section*{POINT}
(1) Optional function 1 (carrier frequency selection)

When low-noise is set, the continuous output capacity of the motor is reduced.
(3) External emergency stop signal (applies only when using MR-J2S-B/MR-J2-B) The external emergency stop signal (EMG) can be made invalid.

0 : External emergency stop signal is valid.
1: External emergency stop signal is invalid (automatically turned ON internally). Since the emergency stop signal at the MR-J2-B cannot be used, do not set " 0 ".

\subsection*{4.3.15 Optional function 2 (no-motor operation selection)}
(1) Selection of no-motor operation (applies when using MR-H-BN only)

0 : Invalid
1: Valid
If no-motor operation is selected, the output signals that would be output if the motor were actually running can be output, and statuses indicated, without connecting the motor.
This makes it possible to check the sequence program of the sequencer CPU without connecting a motor.
(2) Electromagnetic brake interlock output timing (applies only when using MR-HBN)
Select the output timing for the electromagnetic brake interlock signal from among the following.

0 : Regardless of the rotational speed of the servo motor, output occurs under any of the following conditions.
- Servo OFF
- Occurrence of an alarm
- Emergency stop input OFF (valid)

1: Output occurs under any of the above conditions provided that the servo motor rotational speed is zero (expansion parameters).
(3) Selection of microvibration suppression function (applies to MR-J2S-B/MR-J2B)

Set to suppress vibration specific to the servo system on stopping.
0 : Microvibration suppression control is invalidated
1: Microvibration suppression control is valid
(4) Motor lock operation (applies only when using MR-J2S-B/MR-J2-B) Allows test operation with the motor connected but without rotating the motor. The operation is the same as no-motor operation with MR-H-BN.

0 : Motor lock operation is invalidated
1: Motor lock operation is valid
When motor lock operation is made valid, operation is possible without connecting the motor. However, since when MR-J2S-B/MR-J2-B is used the connected motor is automatically identified before operation is started, if no motor is connected the connected motor type may be regarded as a default, depending on the type of amplifier. If this default motor type differs from the setting made in the system settings, the controller will detect minor error 900 (motor type in system settings differs from actually mounted motor), but this will not interfere with operation.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.16 Monitor output 1, 2 offset}

Set the offset value for the monitored items set when setting monitor outputs 1 and 2.

\section*{POINT}
(1) Optional function 2 (no-motor operation selection)

No-motor operation differs from operation in which an actual motor is run in that, in response to signals input in no-motor operation, motor operation is simulated and output signals and status display data are created under the condition that the load torque zero and moment of load inertia are the same as the motor's moment of inertia. Accordingly, the acceleration/
deceleration time and effective torque, and the peak load display value and the regenerative load ratio is always 0 , which is not the case when an actual motor is run.

\subsection*{4.3.17 Pre-alarm data selection}

Used to output from the servo amplifier in analog form the data status when an alarm occurs.
(1) Sampling time selection

Set the intervals in which the data status data when an alarm occurs is recorded in the servo amplifier.
(2) Data selection

Set the data output in analog form from the servo amplifier.
Two types of data can be set.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.3.18 Zero speed}

This parameter sets the speed at which the motor speed is judged to be zero.

\subsection*{4.3.19 Excessive error alarm level}

This parameter sets the range in which the alarm for excessive droop pulses is output.

\subsection*{4.3.20 Optional function 5}
(1) PI-PID control switching

This parameter sets the condition under which switching from PI to PID control, or from PID control to PI control, is valid.
(3) Servo readout characters

When the optional parameter unit is connected, set whether the screen display on the parameter unit will be in Japanese or English.

\subsection*{4.3.21 PI-PID switching position droop}

This parameter sets the amount of position droop on switching to PI-PID control during position control.
The setting becomes effective when switching in accordance with the droop during position control is made valid by the setting for PI-PID control switching made using optional function 5.

\subsection*{4.3.22 Torque control compensation factor}

This parameter is used to expand the torque control range up to the speed control value during torque control. (applies only when using MR-H-BN.) If a large value is set, the speed limit value may be exceeded and the motor may rotate.

\subsection*{4.3.23 Speed differential compensation}

This parameter sets the differential compensation value for the actual speed loop. In PI (proportional integration) control, if the value for speed differential compensation is set at 1000, the range for normal P (proportional) control is effective; if it is set to a value less than 1000, the range for P (proportional) control is expanded.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.4 Parameter Block}
(1) The parameter blocks serve to make setting changes easy by allowing data such as the acceleration/deceleration control to be set for each positioning processing.
(2) A maximum of 16 blocks can be set as parameter blocks.
(3) Parameter blocks can be set at a peripheral device.
(4) The parameter block settings to be made are shown in Table 4.9.

Table 4.9 Parameter Block Settings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|l|}{Default} & \multirow{3}{*}{Remarks} & \multirow[b]{3}{*}{\begin{tabular}{l}
Expla- \\
natory \\
Section
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[b]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & & & & \\
\hline 1 & Interpolation control unit & 0 & - & 1 & - & 2 & - & 3 & - & 3 & - & \begin{tabular}{l}
- Set the units for compensation control. \\
- Can also be used as the units for the command speed and allowable error range for circular interpolation set in the servo program.
\end{tabular} & 7.1.4 \\
\hline 2 & Speed limit value & \[
\begin{gathered}
0.01 \text { to } \\
6000000.00
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mm} / \\
\mathrm{min}
\end{gathered}
\] & \[
\begin{gathered}
0.001 \text { to } \\
600000.000
\end{gathered}
\] & \begin{tabular}{l}
inch/ \\
min
\end{tabular} & \[
\begin{gathered}
0.001 \text { to } \\
2147483.647
\end{gathered}
\] & \begin{tabular}{l}
degree \\
/min
\end{tabular} & \[
\begin{gathered}
1 \text { to } \\
1000000
\end{gathered}
\] & PLS/s & 200000 & PLS/s & \begin{tabular}{l}
- Set the maximum speed for positioning/zeroing. \\
- If the positioning speed or zeroing speed setting exceeds the speed limit value, control is executed at the speed limit value.
\end{tabular} & 4.4.1 \\
\hline 3 & Acceleration time & \multicolumn{8}{|c|}{1 to 65535 ms} & 1000 & ms & - Set the time taken to reach the speed limit value from the start of motion. & \\
\hline 4 & Deceleration time & \multicolumn{8}{|c|}{1 to 65535 ms} & 1000 & ms & - Set the time taken to stop from the speed limit value., & \\
\hline 5 & Rapid stop deceleration time & \multicolumn{8}{|c|}{1 to 65535 ms} & 1000 & ms & - Set the time taken to stop from the speed limit value when a rapid stop is executed. & \\
\hline 6 & S-curve ratio & \multicolumn{8}{|c|}{0 to 100\%} & 0 & \% & \begin{tabular}{l}
- Set the S-curve ratio for Spattern processing. \\
- When the S-curve ratio is 0\%, trapezoidal acceleration/deceleration processing is executed.
\end{tabular} & 4.4.2 \\
\hline 7 & Torque limit value & \multicolumn{8}{|c|}{1 to 500\%} & 300 & \% & - Set the torque limit value in the servo program. & - \\
\hline 8 & Deceleration processing on STOP input & \multicolumn{8}{|l|}{\begin{tabular}{l}
0: Deceleration stop executed based on the deceleration time. \\
1: Deceleration stop executed based on the rapid stop deceleration time.
\end{tabular}} & 0 & - & - Set the deceleration processing when external signals (STOP, FLS, RLS) are input. & - \\
\hline 9 & Allowable error range for circular interpolation & 0 to 10000.0 & \(\mu \mathrm{m}\) & 0 to 1.00000 & inch & 0 to 1.00000 & degree & 0 to 100000 & PLS & 100 & PLS & - Set the permissible range for the locus of the arc and the set end point coordinates. & 4.4.3 \\
\hline
\end{tabular}

\section*{POINTS}
(1) Parameter blocks are designated in the zeroing data, JOG operation data, or servo program.
(2) The various parameter block data can be changed in the servo program. (See Section 6.3.)

\section*{POINT}
(1) The data set in the parameter block is used for positioning control, zeroing, and JOG operation.
(a) The parameter block No. used in positioning control is set from a peripheral device when creating a servo program. If no parameter block No. is set, control is executed in accordance with the contents of parameter block No.1. It is also possible to set parameter block data individually in the servo program.
[Servo program creation screen]

UNIT: Interpolation control unit, S.R.: Speed limit value, \(\Delta\) : Acceleration time, \(\triangle\) : Deceleration time, \(E \triangle\) : Rapid stop deceleration time, P-TORQ: Torque limit value, STOP: Deceleration processing on STOP input,
: Allowable error range for circular interpolation, SPEED: Change speed when constant-speed control is executed,
S RATIO: S-curve ratio when S-pattern processing is executed
(b) The parameter block No. used for zeroing is set when setting the " zeroing data" with a peripheral device.
[Zeroing data setting screen]

(c) The parameter block No. used for JOG operation is set when setting the "JOG operation data" with a peripheral device.
[JOG operation data setting screen]

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

\subsection*{4.4.1 Relationships among the speed limit value, acceleration time, deceleration time, and rapid stop} deceleration time

The speed limit value is the maximum speed during positioning/zeroing. The acceleration time is the time taken to reach the set speed limit value from the start of positioning.
The deceleration time and rapid stop deceleration time are the time taken to effect a stop from the set speed limit value.
Accordingly, the actual acceleration time, deceleration time, and rapid stop deceleration time are faster, because the positioning speed is faster than the speed limit value.

Fig. 4.2 Relationships among the Speed Limit Value, Acceleration Time, Deceleration Time, and Rapid Stop Deceleration Time

\subsection*{4.4.2 S-curve ratio}

The S-curve ratio used when S-pattern processing is used as the acceleration and deceleration processing method can be set. (For details on S-pattern processing, see Section 7.1.7.)
The setting range for the S-curve ratio is 0 to 100 (\%).
If a setting that is outside the applicable range is made, an error occurs on starting, and control is executed with the S-curve ratio set at \(100 \%\).
Errors are set in the servo program setting error area (D9190).
Setting an S-curve ratio enables acceleration and deceleration processing to be executed gently.
The graph for S-pattern processing is a sine curve, as shown below.

\section*{4. PARAMETERS FOR POSITIONING CONTROL}

As shown below, the \(S\) curve ratio setting serves to select the part of the sine curve to be used as the acceleration and deceleration curve.

\subsection*{4.4.3 Allowable error range for circular interpolation}

In control with the center point designated, the locus of the arc calculated from the start point address and center point address may not coincide with the set end point address.
The allowable error range for circular interpolation sets the allowable range for the error between the locus of the arc determined by calculation and the end point address.
If the error is within the allowable range, circular interpolation to the set end point address is executed while also executing error compensation by means of spiral interpolation.
If the setting range is exceeded, an error occurs and positioning does not start. When such an error occurs, the relevant axis is set in the minor error code area.

Fig. 4.3 Spiral Interpolation

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

This section explains how to start a servo program using a sequence program or SFC program for positioning control, and gives other information.

\subsection*{5.1 Cautions on Creating a Sequence Program or SFC Program}

The following cautions should be observed when creating a sequence program or SFC program.
(1) Positioning control instructions

The servo program start request instruction (SVST) (see Section 5.2) and the current value change/speed change instructions (CHGA/CHGV) instructions (see Section 5.3) are used as positioning instructions.
(2) Dedicated devices for the PCPU

Of the servo system CPU devices, those shown in Table 5.1 are exclusively for use with the PCPU.
Check the applications of devices before using them in the sequence program (for details, see Section 3)

Table 5.1 Dedicated Devices for the PCPU
\begin{tabular}{|c|c|}
\hline Device Name & Device No. \\
\hline Internal relays & M2000 to M3839 \\
\hline Data registers & D0 to D799 \\
\hline Special relays & M9073 to M9079 \\
\hline Special registers & D9180 to D9199 \\
\hline
\end{tabular}

Note that internal relays (M2000 to M3839) and data registers (D0 to D799) will not be latched even if a latch range setting is made for them. (The device symbols for M2000 to M3839 are displayed as M, L, and S by the GPP device in accordance with the \(M, L\), and \(S\) settings in the parameters.)
(3) SFC programs

Refer to the manuals below for details on the SFC programming method.
MELSAP II Programming Manual (IB-66361)
SW2SRX-GSV13PE Operating Manual (IB-67266)
SW2SRX-GSV22PE/SW0IX-CAMPE Operating Manual (IB-67399)

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.2 Servo Program Start Request Instruction (SVST)}

There is a servo program start request instruction (SVST).
When executing positioning control, up to 4 axes can be controlled with the SVST instruction.

\subsection*{5.2.1 Start request instruction for 1 to 32 axes (SVST)}

(Note) : Possible with indirect setting only

The following processing is executed at the leading edge (OFF - ON) of the SVST instruction.
- The start accept flag (M2001+n) corresponding to the axis designated in (D) is turned ON (see Section 3.1.3).
- A start request is issued for the servo program designated by "n".

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Data Settings]}
(1) Setting the axis to be started The axis to be started are set in (D) in the way shown below.
\begin{tabular}{|c|c|}
\hline \(\underbrace{\square \square \| \square}\) & \\
\hline & \begin{tabular}{l}
Setting for 1 to 32 axes \\
-1 axis to be started • Make the setting for 1 axis (\(\mathrm{J}^{\star *}\)) \\
-2 axes interpolation to be started . . . Make the setting for 2 axes (\(\left.\mathrm{J}^{* *} \mathrm{~J}^{* *}\right)\) \\
-3 axes interpolation to be started . . . Make the setting for 3 axes (\(J^{* *} J^{* *} J^{* *}\)) \\
-4 axes interpolation to be started . . . Make the setting for 8 axes (\(\left.J^{* *} J^{* *} J^{* *} J^{* *}\right)\) \\
- Simultaneous Start • Make the setting for 2 to 8 axes \\
\({ }^{\circ}\) Designate J+started axis number 1 to 32
\end{tabular} \\
\hline & mber of digits in the axis number display is fixed at 3 including J (i.e. " \(\mathrm{J}^{* *}\)) \\
\hline
\end{tabular}

\section*{Example}

The axis to be started are designated as follows.
- Axis 1

J1
- Axis 1 and axis 2.....................................J1J2
- Axis 1, axis 2, and axis 3J1J2J3
- Axis 1, axis 2, axis 3, and axis 4.............J1J2J3J4
(2) Servo program No. setting

There are two types of servo program number setting: direct and indirect.
(a) In direct setting, the servo program number is designated directly as the number itself (0 to 4095).

\section*{---- Example}

Servo program No. 50 would be set as follows.
- When designated with a K device
(b) In indirect setting, the servo program number is set as a value in a word device.
1) The word devices that can be used are indicated in the table below.
\begin{tabular}{|c|c|}
\hline Word Device & Usable Devices \\
\hline D & 800 to 8191 \\
\hline W & 0 to \(1 F F F\) \\
\hline R & 0 to 8191 \\
\hline
\end{tabular}

\section*{POINT}
(1) When 2 or more axes are started simultaneously, set one of the axes to be started in each servo program.
(a) When programming a simultaneous start in which linear interpolation is to be executed with axes 1 and 2, and circular interpolation is to be executed with axes 3 and 4 , set axis 1 or axis 2 and axis 3 or axis 4 (example: J1J3).

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}
Make the following setting to designate the number of the servo program to be started with the data stored in data register D50:
- Designation with a word device
\begin{tabular}{l|l|l|}
SVST & J1J2J3 & D50
\end{tabular}
2) An index register (\(Z, V\)) or dedicated instruction (IX .IXEND) can be used for index designation of the indirectly set word device.
- For details on index registers (\(Z, \mathrm{~V}\)), see the ACPU Programming Manual (Fundamentals) (IB-66249).
- For details on dedicated instruction (IX. IXEND), see the AnACPU/ AnUCPU Programming Manual (Dedicated) (IB-66251).
[Error Details]
In the following cases, an operation error occurs and the SVST instruction is not executed.
- When the setting for (D) is for 5 or more axes .
- When the axis number given in any digit of (D) is a number other than J 1 to J 32 .
- When the same axis number is set twice in (D).
- When the setting for n is outside the applicable range.

\section*{[Program example]}

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.3 Current Value Change Instructions (CHGA)}

These instructions are used to change the current value of a stopped axis.

\subsection*{5.3.1 CHGA instructions}
\begin{tabular}{|c|}
\hline & \multicolumn{21}{|c|}{Usable Devices} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{\otimes} \\
& \stackrel{0}{0} \\
& \omega
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { ㅇ } \\
& \text { 으 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
\text { Carry } \\
\text { Flag }
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow{2}{*}{Flag Error}} \\
\hline & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{9}{|c|}{Word (16 Bit) Devices} & \multicolumn{2}{|l|}{Constants} & \multicolumn{2}{|l|}{Pointers} & Level & & & & & & & \\
\hline & X & Y & M & L & S & B & F & T & C & D & W & R & A0 & A1 & Z & V & K & H & P & I & N & & & & & \[
\begin{array}{|c|}
\hline \text { M901 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { M } \\
9010
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \mathbf{M} \\
9011
\end{array}
\] \\
\hline (D) & (Note) & & & \\
\hline n & & & & & & & & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & & & & \(\bigcirc\) & \(\bigcirc\) & & & & & 7 & & \(\bigcirc\) & & 0 & 0 \\
\hline
\end{tabular}
(Note) : Possible with indirect setting only.

(1) The following processing is executed at the leading edge (OFF \(\rightarrow \mathrm{ON}\)) of the CHGA instruction:
1) The start accept flag (M2001 to M2032) corresponding to the axis designated in (D) is turned ON.
2) The current value of the axis designated in (D) is changed to the current value designated in \(n\).
3) On completion of the current value change, the start accept flag is turned OFF.

\section*{[Operation Timing]}

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Data Settings]}
(1) Setting the axis for which a current value change is to be executed The axis with respect to which the current value change set in (D) is to be executed is set as follows.

(2) Setting the current value change

There are two types of setting for current value changes: direct setting and indirect setting.
(a) In direct setting, the current value to be changed to is specified directly as a numerical value.

(b) The word devices that can be used are indicated in the table below.
1) The word devices that can be used are indicated in the table below.
\begin{tabular}{|c|c|}
\hline Word Device & Usable Devices \\
\hline D & 800 to 8191 \\
\hline W & 0 to \(1 F F F\) \\
\hline R & 0 to 8191 \\
\hline
\end{tabular}

\section*{Example}

Make the following setting to designate the current value to be changed to with the data stored in data register D50:
- Designation with a word device
2) An index register (\(Z, V\)) can be used for index designation of the indirectly set word device.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Error Details]}
(1) In the following cases an operation error occurs and the CHGA instruction is not executed.
- When the setting for (D) is other than J1 to J32.
(2) In the following cases, a minor error (error on control change) occurs and the current value change is not executed.
When this happens, the error detection flag (M2407+20n) is turned ON and the error code is stored in the minor error code area for the relevant axis.
- When the axis designated in (D) for the current value change is in motion.

\section*{[Program Example]}

The program shown below changes the current value for axis 2 .
(1) Conditions
1) Current value change command Leading edge (OFF \(\rightarrow \mathrm{ON})\) of X000
2) Current value change execution flag M0
3) Axis 2 start accept flag
(used to determine whether axis 2 is stopped or in motion) M2002 (axis 2 start accept flag)
(2) Program example

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.4 Speed Change Instructions (CHGV)}

This instruction is used to change the speed of an axis during positioning or JOG operation.

\subsection*{5.4.1 CHGV instructions}
\begin{tabular}{|c|}
\hline & \multicolumn{21}{|c|}{Usable Devices} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{\otimes} \\
& \stackrel{0}{0} \\
& \stackrel{\rightharpoonup}{n}
\end{aligned}
\]} & \multirow[b]{3}{*}{\(\stackrel{\text { ¢ }}{\text { ¢ }}\)} & \multirow[b]{2}{*}{\[
\begin{array}{|c|c|}
\hline \text { Carry } \\
\text { Flag }
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Flag Error}} \\
\hline & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{9}{|c|}{Word (16 Bit) Devices} & \multicolumn{2}{|l|}{Constants} & \multicolumn{2}{|l|}{Pointers} & Level & & & & & & & \\
\hline & X & Y & M & L & S & B & F & T & C & D & W & R & A0 & A1 & Z & V & K & H & P & 1 & N & & & & & \[
\begin{array}{|c|}
\hline \text { M901 } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { M } \\
9010
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { M } \\
9011 \\
\hline
\end{array}
\] \\
\hline (D) & (Note) & & & \\
\hline n & & & & & & & & & & \(\bigcirc\) & 0 & \(\bigcirc\) & & & & & \(\bigcirc\) & 0 & & & & & 7 & & \(\bigcirc\) & & \(\bigcirc\) & 0 \\
\hline
\end{tabular}
(Note) : Possible with indirect setting only

(1) The following processing is executed at the leading edge (OFF \(\rightarrow \mathrm{ON}\)) of the CHGV instruction:
1) The speed change flag (M2061 to M2092) corresponding to the axis designated in (D) is turned ON.
2) The speed of the axis designated in (D) is changed to the current value designated in \(n\).
3) The speed change in progress flag is turned OFF.

\section*{[Operation Timing]}

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Data Settings]}
(1) Setting the axis for which a speed change is to be executed The axis with respect to which the speed change set in (D) is to be executed is set as follows.

Example
Axis to be started are designated as shown below.
- Axis 1
(2) Setting the speed change

There are two types of setting for speed changes: direct setting and indirect setting.
(a) In direct setting, the speed to be changed to is specified directly as a numerical value.
---- Example
If the speed to be changed "10", the setting as follows.
- When designated with a K device K10
(b) The word devices that can be used are indicated in the table below.
1) The word devices that can be used are indicated in the table below.
\begin{tabular}{|c|c|}
\hline Word Device & Usable Devices \\
\hline D & 800 to 8191 \\
\hline W & 0 to 1 FFF \\
\hline R & 0 to 8191 \\
\hline
\end{tabular}

\section*{Example}

Make the following setting to designate the speed to be changed to with the data stored in data register D50:
- Designation with a word device
\begin{tabular}{|c|c|}
\hline CHGV & J11 \\
\hline
\end{tabular}
2) An index register (\(Z, V\)) can be used for index designation of the indirectly set word device.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Error Details]}
[Program Example]
(1) In the following cases an operation error occurs and the CHGA instruction is not executed.
- When the setting for \((\mathrm{D})\) is other than J 1 to J 32 .
(2) In the following cases, a minor error (error on control change) occurs and the speed change is not executed.
When this happens, the error detection flag (M2407+20n) is turned ON and the error code is stored in the minor error code area for the relevant axis.
- When the axis designated in (D) is executing a zeroing or circular interpolation when the speed change is made.
- When the axis designated in (D) is decelerating when the speed change is made.
- When the speed designated by n is outside the range of 0 to the speed limit value when the speed change is made.

The program shown below changes the current value for axis 2 .
(1) Conditions
1) Speed change command.............................. Leading edge \((\mathrm{OFF} \rightarrow \mathrm{ON})\) of X000
(2) Program example

\section*{POINT}
- Points to note when a speed change is performed
- If a speed change instruction (CHGV) is executed in the period between execution of the servo program start request instruction (SVST) and the point where the "positioning start completion signal" comes ON, the speed change may be invalid. To perform speed changes in approximately the same timing as a start, be sure to enter the positioning start completion signal ON status as an interlock for execution of the speed change instruction.
Example)
Execution Speed change in command progress flag

Positioning start completion signal

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.5 Retracing during Positioning}

When a minus speed is designated in the CHGV instruction at the start to make a speed change request, deceleration begins at that time and retracing starts on completion of deceleration. The following operations can be performed by the servo instructions.
\begin{tabular}{|c|c|c|}
\hline Control mode & Servo instruction & Operation \\
\hline Linear control & \begin{tabular}{l|l|l|l|}
\hline ABS-1 & ABS-2 & ABS-3 & ABS-4 \\
\hline INC-1 & INC-2 & INC-3 & INC-4 \\
\hline
\end{tabular} & \multirow[t]{3}{*}{The travel direction is reversed on completion of deceleration, and retracing takes place and stops (waits) at the positioning start point according to the absolute value of the designated speed. In circular interpolation, retracing takes place on the circular track.} \\
\hline Circular interpolation control & ABS Circular INC Circular & \\
\hline Fixed-pitch feed control & FEED-1 FEED-2 FEED-3 & \\
\hline Constant-speed control & \begin{tabular}{|l|l|}
\hline CPSTART1 & CPSTART2 \\
\hline CPSTART3 & CPSTART4 \\
\hline
\end{tabular} & The travel direction is reversed on completion of deceleration, and retracing takes place and stops (waits) at the preceding point according to the absolute value of the designated speed. \\
\hline Speed control (I) & VF VR & \multirow[t]{2}{*}{The travel direction is reversed on completion of deceleration according to the absolute value of the designated speed. Retracing does not stop unless the stop command is entered.} \\
\hline Speed control (II) & VVF VVR & \\
\hline Speed/position control & VPF VPR VPSTART & \multirow{4}{*}{\begin{tabular}{l}
Retracing is not possible. \\
A normal speed change request is assumed. \\
A minor error 305 is returned and a speed limit value is used for control.
\end{tabular}} \\
\hline Position follow-up control & PFSTART & \\
\hline Speed switching control & VSTART & \\
\hline \multicolumn{2}{|l|}{JOG operation} & \\
\hline High speed oscillation & OSC & Speed cannot be changed. A minor error 310 is returned. \\
\hline Zeroing & ZERO & Speed cannot be changed. A minor error 301 is returned. \\
\hline
\end{tabular}
(Reference) Minor error 301 : Speed has been changed during zeroing.
Minor error 305 : The designated speed is not within the range from 0 to the speed limit value. Minor error 310 : Speed has been changed during high speed oscillation.
[Control Details]
(1) When speed is changed to minus speed, control takes place as shown in the table above according to the control mode in use.
(2) The designated retracing speed is indicated by the absolute value of the change speed. When it exceeds a speed limit value, a minor error 305 is returned and retracing is controlled according to the speed limit value.
(3) When stopping (waiting) continues at a return position, processing takes place as follows.
(a) Signal status
- Start accept (M2001+n) ON (remains in the status before CHGV execution)
- Positioning start completion (M2400 + 20n) ON (remains in the status before CHGV execution)
- Positioning completion (M2401+20n)

OFF
- In-position (M2402+20n) ON
- Command in-position (M2403+20n) OFF
- Speed change "0" accept flag (M2240+n)

ON
(b) When attempting a start again, change the speed to plus speed.
(c) When terminating positioning, set the stop command to ON.
(d) When attempting a minus speed change again, it is ignored.
(4) Retracing takes place in the speed control mode as follows.
(a) When changing the travel direction again, change the speed to plus speed.
(b) When stopping retracing, set the stop command to ON.
(c) When making minus speed change again, speed change is made in the reverse direction.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\section*{[Error Details]}
(1) While start is attempted in the control mode allowing retracing, a minor error 305 is returned and retracing is controlled according to a speed limit value so long as the absolute value of a change speed (minus) exceeds the speed limit value.
(2) In constant-speed control, retracing is controlled according to a speed designated in the program (speed clamp control in speed change during constant-speed control) so long as the absolute value of a change speed (minus) exceeds the speed designated in the servo program. In this case, no error is returned.
(3) No control takes place after automatic deceleration starts. A minor error 303 is returned.
[Example of Operation during Constant-Speed Control]
The following describes the operations to be performed for a retracing request made during constant-speed control.

When a minus speed change is attempted during positioning to P 2 , retracing is performed up to P 1 along the track designated in the program, then processing is suspended there.

\section*{POINTS}
(1) When the \(M\) code FIN wait function is used during constant speed control, a retracing request made in the FIN wait status (stopped status) is ignored.
(2) In the above example, retracing to P 2 is performed when a retracing request is made immediately before P2 and P2 is passed during deceleration.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.6 Torque Limit Value Change Request (CHGT)}

In the real mode, the sequence program can change the torque limit value regardless of whether it is operating or being stopped.
The following describes this process.

\subsection*{5.6.1 CHGT instructions}
\begin{tabular}{|c|}
\hline & \multicolumn{21}{|c|}{Usable Devices} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{n
\(\stackrel{2}{0}\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{\oplus} \\
& \stackrel{N}{\omega} \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\]} & \multirow[b]{3}{*}{\(\stackrel{\text { ¢ }}{\text { ¢ }}\)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Carry } \\
\text { Flag }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\multirow{2}{*}{Flag Error}} \\
\hline & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{9}{|c|}{Word (16 Bit) Devices} & \multicolumn{2}{|l|}{Constants} & \multicolumn{2}{|l|}{Pointers} & Level & & & & & & & \\
\hline & X & Y & M & L & S & B & F & T & C & D & W & R & A0 & A1 & Z & V & K & H & P & 1 & N & & & & & M9012 & M9010 & M9011 \\
\hline (D) & 7 & & (Note) & & - & - \\
\hline n & & & & & & & & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & & & & \(\bigcirc\) & \(\bigcirc\) & & & & & 7 & & \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
(Note) : possible with indirect setting only

\section*{[Control Details]}

In the real mode, the sequence program changes the torque limit value of the designated axis at the leading edge of a CHGT instruction execution command (OFF \(\rightarrow \mathrm{ON}\)).
(1) In the real mode, the torque limit value can be changed at any time for axis after servo start completion regardless of the servo status (start, stop, servo ON, and servo OFF).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Execution command \(\qquad\)} \\
\hline \multicolumn{3}{|l|}{CHGT instruction} \\
\hline Torque limit value to be changed & & — \\
\hline Torque limit value to be directed for servo & \[
300 \%
\] & 100\% \\
\hline
\end{tabular}

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}
(2) Relation to the torque limit value designated in the servo program Start
At normal start, a torque limit value is directed to the servo of the start axis according to the torque set by the servo program or the torque limit value of the designated parameter block. At interpolation start, it is directed to the servo of the interpolation axis.
\(\downarrow\)
Execution of the CHGT instruction causes the set torque limit value to be directed only to the designated axis.
\[
\downarrow
\]

When the servo program starts, the torque limit value to be directed to the servo at JOG operation start is clamped to that changed by the CHGT instruction. Namely, the value is effective only when the torque limit value designated by the servo program or parameter block is lower than that changed by the CHGT instruction. Clamp processing of this torque limit value varies from axis to axis.

\section*{Start in progress}
1) When the following torque limit values are set, they cannot be changed to values greater than the torque limit value changed by the CHGT instruction.
- Torque limit value at intermediate points during constant speed control or speed switching control
- Torque limit value at position control switching points during speed/position switching control
- Torque limit value during speed control II
2) The CHGT instruction can change the torque limit value to any value greater than the limit value designated in the servo program or parameter block.

\section*{[Error Details]}
(1) Setting must be made in the range 1 to \(500(\%)\). When the setting is made outside this range, a minor error 311 is returned and the torque limit value is not changed.
(2) When the CHGT instruction is executed for an axis not started yet, a minor error 312 is returned and the torque limit value is not changed.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.7 SFC Programs}

This section explains how to start servo programs using SFC programs.

\subsection*{5.7.1 Starting and stopping SFC programs}

SFC programs are started and stopped from the main sequence program. The methods for starting and stopping SFC programs are described below.
(1) Starting SFC programs
(a) An SFC program is started by turning M9101 (SFC program start/stop) ON in the main sequence program.

(b) There are two types of SFC program start, as indicated below, and the one that is effective is determined by the ON/OFF status of special relay M9102 (SFC program start status selection).
1) SFC program initial start

By turning special relay M9101 ON while special relay M9102 is OFF, the SFC program is started from the initial step of block 0.
2) SFC program resumptive start

By turning special relay M9101 ON while special relay M9102 is ON, the SFC program is started from the block and step that was being executed immediately before operation was stopped.
(c) On creation of an SFC program, if no main sequence program has been created (applies only when step 0 is an END instruction), the circuit shown below is automatically created in the main sequence program area by the peripheral device.

(2) Stopping SFC programs.
(a) An SFC program is stopped by turning M9101 (SFC program start/stop) OFF in the main sequence program.

(b) When an SFC program is stopped, all the operation outputs in the step being executed are turned OFF.

\section*{POINT}

Write during run in the SFC mode is not possible with respect to the motion controller.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}

\subsection*{5.7.2 Servo program start request}

A servo program can be started in one of two ways: by using the program start-up symbol intended for this purpose ([SV]), or by inputting a servo program start request instruction in the internal circuit of a normal step.(\(\square\))
(1) When an [SV] step is created.
<Main sequence program>

<SFC program>
ram

Step 1 (servo program start request instruction)

Switching condition 2

\section*{POINT}
(1) When an [SV] step is created, the servo program start request ladder block \(\left(\longmapsto\right.\) SVST \(\left.{ }^{* * *} \quad H\right)\) is mandatorily inserted in the sequence program.
(2) If an SVST instruction is edited and converted, a start accept bit (M2001 to M2032) is automatically inserted into the switching conditions before and after the relevant SFC step to act as an interlock. However, if the order of steps has been changed by addition or insertion, this interlock may not be automatically added/deleted in the switching conditions. Therefore, if a step has been added or inserted, always display the switching conditions using ZOOM display and check the interlock.
(3) Only the sequence (\(_\)SVST *** \(\rfloor\)) can be set at an [SV] step. If any additional instructions are to be set, either set them in a normal step (\(\square\)) or set another sequence instruction section executed in parallel as a normal step (\(\square\)).
(4) For details on how to operate peripheral devices used to edit and monitor SFC programs, refer to the SW2SRX-GSV13PE Operating Manual and SW2SRX-GSV22PE Operating Manual.

\section*{5. SEQUENCE PROGRAMS AND SFC PROGRAMS}
(2) When a servo program start instruction is input inside a normal step \(\qquad\)
<Main sequence program>

<SFC program>

Step 1 (servo program start request instruction)

Switching condition 2

\section*{POINTS}
(1) If an SVST/CHGA instruction is edited and converted, a start accept bit (M2001+n) is automatically inserted into the switching conditions before and after the relevant SFC step to act as an interlock.
(2) If a CHGV instruction is edited and converted, a speed change in progress flag (M2061 to M2092) is automatically inserted into the switching conditions before and after the relevant SFC step to act as an interlock.
(3) Set commands such as speed change commands and stop commands, which are executed in an arbitrary timing, in the main sequence program.
(4) For details on how to operate peripheral devices used to edit and monitor SFC programs, refer to the SW2SRX-GSV13PE Operating Manual and SW2SRX-GSV22PE Operating Manual.

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

Servo programs serve to designate the type of the positioning control, and the positioning data, required to execute positioning control with the servo system CPU.
This section explains the configuration, and method for designating, servo programs.
For details on the various types of servo program, see the explanation of positioning control in Section 7.

\subsection*{6.1 Servo Program Composition and Area}

This section describes the composition of servo programs and the area in which a servo program is stored.

\subsection*{6.1.1 Servo program composition}

A servo program comprises a program number, servo instructions, and positioning data.
When a program number and the required servo instructions are designated using a peripheral device, the positioning data required to execute the designated servo instructions can be set.

Fig. 6.1 Example Composition of a Servo Program
(1) Program No \(\qquad\) This is a number used to call the program from the sequence program: any number in the range 0 to 4095 can be set.
(2) Servo instruction Indicates the type of positioning control.

For details, see Section 6.2.
(3) Positioning data...... This is the data required to execute servo instructions. The data required for execution is fixed for each servo instruction.
For details, see Section 6.3.
The follows applies for the servo program shown in Figure 6.1:
- Used axes and positioning address
- Commanded speed
- Dwell time \(\}\) Data which will be set to default
- M code \(\quad\}\) values for control if not set.
- P.B. \(\}\) Control is executed using the data (parameter block) \(\}\) of parameter block 1 (P.B.1).

\subsection*{6.1.2 Servo program area}
(1) Servo program area

The servo program area is an internal memory of the system CPU (not in the memory cassette) which serves to store the servo program created with a peripheral device.
The servo program area is an internal RAM.
(2) Servo program capacity

The servo program area has a capacity of 14334 steps.

Fig. 6.2 Servo Program Area

\section*{POINT}

If the servo program area has insufficient capacity, execute multiple positioning control operations with one program by indirect setting of the positioning data used in the servo program. (For details on indirect setting, see Section 6.4.2.)

\subsection*{6.2 Servo Instructions}

This section presents the servo instructions used in servo programs.
(1) How to read the servo instruction tables

Fig. 6.1 How to Read Servo Instruction Tables

\section*{6．SERVO PROGRAMS FOR POSITIONING CONTROL}
（2）Servo instruction list
The servo instructions that can be used in servo programs，and the positioning data set for the servo instructions，are indicated in Table 6．2．
For details on the positioning data set for servo instructions，see Section 6．3．
Table 6．2 Servo Instruction List
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Position－ ing Control} & \multirow[b]{3}{*}{Instruction Symbol} & \multirow[b]{3}{*}{Processing Details} & \multicolumn{27}{|c|}{Positioning Data} & & \\
\hline & & & \multicolumn{7}{|c|}{Common Settings} & \multicolumn{4}{|l|}{Circular Interpolation} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{7}{|c|}{Others} & & \\
\hline & & & & \[
\frac{\omega}{x}
\] & & & & \[
\begin{aligned}
& \pm \\
& \stackrel{0}{0} \\
& \dot{1} \\
& \hline
\end{aligned}
\] & & & & & & & & & & & & & & & & & & & \[
\] & \multicolumn{2}{|l|}{} & & \\
\hline \multirow[b]{2}{*}{1－axis} & ABS－1 & Absolute 1－axis positioning & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow[b]{2}{*}{\[
\left|\begin{array}{r}
4 \text { to } \\
16
\end{array}\right|
\]} & \multirow[b]{2}{*}{7.2} \\
\hline & INC－1 & Incremental 1－axis positioning & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline \multirow[b]{2}{*}{2－axes} & ABS－2 & Absolute 2－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow{2}{*}{\[
\begin{gathered}
5 \text { to } \\
18
\end{gathered}
\]} & \multirow{2}{*}{7.3} \\
\hline & INC－2 & Incremental 2－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline \multirow[b]{2}{*}{3 －axes} & ABS－3 & Absolute 3－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow[b]{2}{*}{\[
\begin{gathered}
7 \text { to } \\
20
\end{gathered}
\]} & \multirow[b]{2}{*}{7.4} \\
\hline & INC－3 & Incremental 3－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline \multirow[b]{2}{*}{4－axes} & ABS－4 & Absolute 4－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow{2}{*}{\[
\left|\begin{array}{l}
8 \text { to } \\
23
\end{array}\right|
\]} & \multirow{2}{*}{7.5} \\
\hline & INC－4 & Incremental 4－axes linear interpolation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline \multirow[t]{14}{*}{} & ABS \({ }^{\text {¢ }}\) & Absolute circular interpolation by auxiliary point designation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & 0 & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow[b]{2}{*}{\[
\begin{gathered}
7 \text { to } \\
21
\end{gathered}
\]} & \multirow[t]{2}{*}{7.6} \\
\hline & INC \({ }^{\text {¢ }}\) & Incremental circular interpolation by auxiliary point designation & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & 0 & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & ABS 入 & Absolute circular interpolation by radius designation，less than CW180 \({ }^{\circ}\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow{8}{*}{\[
\left|\begin{array}{c}
6 \text { to } \\
20
\end{array}\right|
\]} & \multirow{8}{*}{7.7} \\
\hline & ABS \(\bigcap\) & Absolute circular interpolation by radius designation，CW \(180^{\circ}\) or more & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & ABS 4 & Absolute circular interpolation by radius designation，less than CCW180 \({ }^{\circ}\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & ABS \(\bigcirc\) & Absolute circular interpolation by radius designation，CCW180 \({ }^{\circ}\) or more \(\qquad\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC 入 & Incremental circular interpolation by radius designation，less than CW180 \({ }^{\circ}\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC \(\square\) & Incremental circular interpolation by radius designation，CW \(180^{\circ}\) or more \(\qquad\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC＜ & Incremental circular interpolation by radius designation，less than CCW180 \({ }^{\circ}\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC 3 & Incremental circular interpolation by radius designation，CCW180 \({ }^{\circ}\) or more & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & ABS \(\cdot \square\) & Absolute circular interpolation by center point designation，CW & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & \(\bigcirc\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow{4}{*}{\[
\left.\begin{gathered}
7 \text { to } \\
21
\end{gathered} \right\rvert\,
\]} & \multirow{4}{*}{7.8} \\
\hline & ABS & Absolute circular interpolation by center point designation，CCW & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & \(\bigcirc\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC \(\cdot 1\) & Incremental circular interpolation by center point designation，CW & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & O & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & INC－A & Incremental circular interpolation by center point designation，CCW & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & O & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
O ：Must be set \\
\(\Delta\) ：Set if required
\end{tabular}} \\
\hline
\end{tabular}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

Table 6.2 Servo Instruction List (Continued)
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\begin{gathered}
\text { Position- } \\
\text { ing } \\
\text { Control }
\end{gathered}
\]}} & \multirow[b]{3}{*}{Instruction Symbol} & \multirow[b]{3}{*}{Processing Details} & \multicolumn{27}{|c|}{Positioning Data} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} \\
\hline & & & & \multicolumn{7}{|c|}{Common Settings} & \multicolumn{4}{|l|}{Circular
Interpolation} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{7}{|c|}{Others} & & \\
\hline & & & & & \[
\frac{n}{x}
\] & & & \[
\] & \[
\begin{array}{|l}
\hline 0 \\
\hline 0 \\
0 \\
1 \\
\\
\hline
\end{array}
\] & \(\square\) & & & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{0}{0} \\
& \frac{1}{0} \\
& \stackrel{y y}{\omega} \\
& \hline
\end{aligned}
\] & & & & & & & & & & & & & & & \[
\begin{aligned}
& \frac{7}{\omega} \\
& \stackrel{\rightharpoonup}{\omega} \\
& \hline
\end{aligned}
\] & \[
\frac{2}{\frac{1}{6}}
\] & & & \\
\hline \(\stackrel{\text { O}}{ \pm}\) & 1 axis & FEED-1 & 1-axis fixed-pitch feed start & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 4 \text { to } \\
17 \\
\hline
\end{array}
\] & 7.9 \\
\hline - & 2 axis & FEED-2 & 2-axes linear interpolation Fixed-pitch feed start & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 5 \text { to } \\
19 \\
\hline
\end{array}
\] & \begin{tabular}{|l|l}
7. \\
10 \\
\hline
\end{tabular} \\
\hline - & 3 axis & FEED-3 & 3-axes linear interpolation Fixed-pitch feed start & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 7 \text { to } \\
21 \\
\hline
\end{array}
\] & \begin{tabular}{|l|}
7. \\
11 \\
\hline
\end{tabular} \\
\hline ¢ & Forward rotation & VF & Speed control (I) Forward rotation start & \(\Delta\) & 0 & & \(\bigcirc\) & & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \multirow[t]{2}{*}{\[
\begin{gathered}
3 \text { to } \\
14
\end{gathered}
\]} & \multirow[t]{2}{*}{7.
12} \\
\hline - & Reverse rotation & VR & Speed control (I) Reverse rotation start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & & \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{|c|}
\hline For- \\
ward \\
rota- \\
tion
\end{tabular} & VVF & Speed control (II) Forward rotation start & \(\Delta\) & 0 & & \(\bigcirc\) & & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & 3 to & 7. \\
\hline & \begin{tabular}{|c|}
\hline \(\mathrm{Re}-\) \\
verse \\
rota- \\
tion \\
\hline
\end{tabular} & VVR & Speed control (II) Reverse rotation start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & 16 & 13 \\
\hline \multirow[t]{3}{*}{} & \begin{tabular}{l}
For- \\
ward \\
rota- \\
tion
\end{tabular} & VPF & \begin{tabular}{l}
Speed/position switching control \\
Forward rotation start
\end{tabular} & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & 4 to & 7. \\
\hline & \begin{tabular}{c}
Re- \\
verse \\
rota- \\
tion \\
\hline
\end{tabular} & VPR & \begin{tabular}{l}
Speed/position switching control \\
Reverse rotation start
\end{tabular} & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & 17 & 1. \\
\hline & Re-start & VPSTART & \begin{tabular}{l}
Speed/position switching control \\
Restart
\end{tabular} & & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & \[
\begin{gathered}
2 \text { to } \\
4
\end{gathered}
\] & \begin{tabular}{c}
\\
\hline 7. \\
14. \\
2 \\
\hline
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\multirow{10}{*}{Speed switching control}} & VSTART & Speed switching control, start & \(\Delta\) & & & & & & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 1 \text { to } \\
12 \\
\hline
\end{array}
\] & \\
\hline & & VEND & Speed switching control, end & 1 & \\
\hline & & ABS-1 & \multirow{3}{*}{Speed switching control End point address} & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \begin{tabular}{|c}
4 to \\
9
\end{tabular} & \\
\hline & & ABS-2 & & & \(\bigcirc\) & O & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 5 \text { to } \\
10 \\
\hline
\end{array}
\] & \\
\hline & & ABS-3 & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|r|}
\hline 7 \text { to } \\
12 \\
\hline
\end{array}
\] & 7. \\
\hline & & INC-1 & \multirow{3}{*}{Speed switching control Travel value to end point} & & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \[
\begin{array}{|c|}
\hline 4 \text { to } \\
9 \\
\hline
\end{array}
\] & 1 \\
\hline & & INC-2 & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \begin{tabular}{|r|r|}
5 \\
10 \\
10
\end{tabular} & \\
\hline & & INC-3 & & & \(\bigcirc\) & O & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & & \(\Delta\) & \(\Delta\) & & & \begin{tabular}{|r|r|}
7 \\
\hline 12 \\
12 \\
\hline
\end{tabular} & \\
\hline & & VABS & Absolute designation of speed switching point & & & \(\bigcirc\) & \(\bigcirc\) & & \(\Delta\) & \(\Delta\) & 4 to & \\
\hline & & VINC & Incremental designation of speed switching point & & & \(\bigcirc\) & \(\bigcirc\) & & \(\Delta\) & \(\Delta\) & 6 & \\
\hline & Position ollow-up control & PFSTART & Position follow-up control start & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & \(\Delta\) & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & & \[
\left|\begin{array}{c}
4 \text { to } \\
18
\end{array}\right|
\] & 7. \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Constantspeed control}} & CPSTART1 & 1-axis constant-speed control start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & \(\Delta\) & 3 to & \\
\hline & & CPSTART2 & 2-axes constant-speed
control start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & \(\Delta\) & 17 & 7. \\
\hline & & CPSTART3 & 3-axes constant-speed
control start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & \(\Delta\) & to & 16 \\
\hline & & CPSTART4 & 4-axes constant-speed
control start & \(\Delta\) & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & \(\Delta\) & & \(\Delta\) & & & & \(\Delta\) & \(\Delta\) & & \(\Delta\) & 18 & \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
O : Must be set \\
\(\Delta\) : Set if required
\end{tabular}} \\
\hline
\end{tabular}

\section*{6．SERVO PROGRAMS FOR POSITIONING CONTROL}

Table 6．2 Servo Instruction List（Continued）
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Position－ ing Control} & \multirow[b]{3}{*}{Instruction Symbol} & \multirow[b]{3}{*}{Processing Details} & \multicolumn{25}{|c|}{Positioning Data} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{}} \\
\hline & & & \multicolumn{6}{|c|}{Common Settings} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { Circular } \\
\text { Interpolation } \\
\hline
\end{gathered}
\]} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{6}{|c|}{Others} & & \\
\hline & & & & & & & \begin{tabular}{l}
\\
\hline 0 \\
\hline 0 \\
\hline 1 \\
\hline 1 \\
\hline 1 \\
\hline
\end{tabular} & & & & \multicolumn{2}{|l|}{} & & & & & & & & & & & & \begin{tabular}{l|l}
\(\widehat{O}\) \\
\hline \\
\hline
\end{tabular} & \begin{tabular}{l}
区 \\
\hline 0 \\
©゙ \\
\hline
\end{tabular} & \[
\begin{array}{|l}
\hline \stackrel{\rightharpoonup}{5} \\
\vdots \\
\hline
\end{array}
\] & & & \\
\hline \multirow{29}{*}{Constant－ speed control} & ABS－1 & \multirow{18}{*}{Constant－speed， passing point absolute designation} & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 2 to
7 & \\
\hline & ABS－2 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 3 to
8 & \\
\hline & ABS－3 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 4 to & \\
\hline & ABS－4 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \({ }^{\text {¢ }}\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \(\bigcap\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS＜ & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \(\curvearrowleft\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABS \({ }^{-1}\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABH \({ }^{\text {¢ }}\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & & & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 9
14
14 & \\
\hline & ABH 入 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABH \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABH \(<\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABH \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & － & & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & ABH & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & \(\bigcirc\) & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC－1 & \multirow{11}{*}{Constant－speed， passing point incremental designation} & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 2 to
7 & 7. \\
\hline & INC－2 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 3 to
8 & \\
\hline & INC－3 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 4 to
9 & \\
\hline & INC－4 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC \({ }^{\text {¢ }}\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC 入 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC＜ & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC \(C\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & \(\bigcirc\) & & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC \(\cdot \square\) & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC & & \(\bigcirc\) & ○ & & & \(\Delta\) & \(\Delta\) & & & \(\bigcirc\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & 10 & \\
\hline
\end{tabular}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.3 Positioning Data}

The positioning data set for servo programs is shown in Table 6.3.
Table 6.3 Positioning Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{3}{*}{Name}} & \multicolumn{2}{|r|}{\multirow{3}{*}{Explanation}} & \multicolumn{5}{|c|}{Setting Made With Peripheral Device} & \\
\hline & & & & & \multirow[t]{2}{*}{Default Value} & \multicolumn{4}{|c|}{Setting Range} & \\
\hline & & & & & & mm & inch & degree & PULSE & \\
\hline \multicolumn{3}{|r|}{Parameter block No.} & \multicolumn{2}{|l|}{- Sets the parameter block on the basis of which data such as that for acceieration and deceleration processing and deceleration processing on STOP input will be set for each axis.} & 1 & \multicolumn{4}{|c|}{1 to 64} & \\
\hline \multicolumn{3}{|c|}{Axis} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Set the axis to be started. \\
- For interpolation, the numbers of the axes involved in the interpolation are designated.
\end{tabular}} & - & \multicolumn{4}{|c|}{1 to 32} & \\
\hline & \multirow{5}{*}{} & Absolute date method & Address & Set the positioning address as an absolute address when using the absolute data method as the positioning method. & - & \[
\begin{array}{|c}
\hline-214748364.8 \\
\text { to } \\
21474836.7 \\
(\mu \mathrm{~m}) \\
\hline
\end{array}
\] & \[
\begin{gathered}
-21474.83648 \\
\text { to } \\
21474.83647
\end{gathered}
\] & 0 to 359.99999 & \[
\begin{gathered}
-2147483648 \\
\text { to } \\
2147483647
\end{gathered}
\] & \\
\hline & & \multirow{4}{*}{Incremental method} & \multirow{4}{*}{Travel value} & \multirow[t]{4}{*}{\begin{tabular}{l}
Set the positioning address as a travel value when using the incremental method as the positioning method. The direction of travel is indicated by the sign. However, only positive settings can be made for \#\#speed/position switching control. \\
[Positive : Forward rotation (direction in which address values increase) \\
Negative: Reverse rotation (direction in which address values decrease)
\end{tabular}} & & \multicolumn{4}{|r|}{For other than \#\#speed/position switching control} & \\
\hline & & & & & & \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & \\
\hline & & & & & - & \multicolumn{4}{|c|}{For speed/position switching control} & \\
\hline & & & & & & \[
\begin{gathered}
\hline 0 \text { to } \\
214748364.7 \\
(\mu \mathrm{~m}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } \\
21474.83647
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } \\
21474.83647
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } \\
2147483647
\end{gathered}
\] & \\
\hline ¢ & \multicolumn{2}{|l|}{Commanded speed} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Sets the positioning speed. \\
- The units for the speed are the "control units" set in the parameter block. \\
- For interpolation, this setting is the resultant speed/long-axis reference speed/reference axis speed. (Applies to PTP control only)
\end{tabular}} & - & \[
\begin{gathered}
0.01 \text { to } \\
6000000.00 \\
(\mathrm{~mm} / \mathrm{min})
\end{gathered}
\] & 0.001 to 600000.000 (inch/min) & \[
\begin{gathered}
0.001 \text { to } \\
2147483.647 \\
\text { (degree } / \mathrm{min} \text {) }
\end{gathered}
\] & \[
\begin{aligned}
& 1 \text { to } 10000000 \\
& \text { (PLS/s) }
\end{aligned}
\] & \\
\hline & \multicolumn{2}{|l|}{Dwell time} & \multicolumn{2}{|l|}{- Set the time from positioning to the positioning address to output of the positioning completion signal (M2401+20n).} & 0 (ms) & \multicolumn{4}{|c|}{0 to 5000 (ms)} & \\
\hline & \multicolumn{2}{|l|}{M code} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Set the M code. \\
- For speed switching control and constant speed control, different settings can be made for each point. \\
- The setting is updated each time motion is started or at each designated point.
\end{tabular}} & 0 & \multicolumn{4}{|c|}{0 to 255} & \\
\hline & \multicolumn{2}{|l|}{Torque limit value} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Set the torque limit value. \\
- When motion is started, the torque limit set in the parameter block is used, but in speed switching control a different value can be set for each point and the set torque values can be made effective at designated points.
\end{tabular}} & Torque limit setting (\%) in the parameter block & \multicolumn{4}{|c|}{1 to 500 (\%)} & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & Absolute data method & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- Set when executing circular interpolation by designating an auxiliary point.}} & \multirow[t]{2}{*}{__} & \[
\begin{array}{|c}
\hline-214748364.8 \\
\text { to } \\
214748364.7 \\
(\mu \mathrm{~m}) \\
\hline
\end{array}
\] & \[
\begin{gathered}
-21474.83648 \\
\text { to } \\
21474.83647
\end{gathered}
\] & 0 to 359.99999 & \[
\begin{gathered}
-2147483648 \\
\text { to } \\
2147483647
\end{gathered}
\] & \\
\hline & & Incremental method & & & & \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & \\
\hline & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\stackrel{0}{2} \\
\stackrel{\rightharpoonup}{6} \\
\underset{\sim}{6}
\end{array}\right|
\]} & Absolute data method & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
- Set when executing circular interpolation by designating a radius. \\
- The sitting ranges, which depend on the positioning method used, are shown to the right.
\end{tabular}}} & \multirow[t]{2}{*}{} & \[
\begin{gathered}
0.1 \text { to } \\
429496729.5 \\
(\mu \mathrm{~m}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.00001 \text { to } \\
42949.67295
\end{gathered}
\] & 0 to 359.99999 & \[
\begin{gathered}
1 \text { to } \\
4294967295
\end{gathered}
\] & \\
\hline (e) & & Incremental method & & & & \[
\begin{gathered}
0.1 \text { to } \\
214748364.7 \\
(\mu \mathrm{~m})
\end{gathered}
\] & \[
\begin{gathered}
0.00001 \text { to } \\
21474.83647
\end{gathered}
\] & \[
\begin{gathered}
0.00001 \text { to } \\
21474.83647
\end{gathered}
\] & \[
\begin{gathered}
1 \text { to } \\
2147483647
\end{gathered}
\] & \\
\hline & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \stackrel{\rightharpoonup}{\bar{O}} \\
& \text { 인 } \\
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{\rightharpoonup}{0} \\
& \hline
\end{aligned}\right.
\]} & Absolute data method & \multirow[t]{2}{*}{- Set when point.} & executing circular interpolation by designating a center & \multirow[t]{2}{*}{} & \[
\begin{array}{|c}
\hline-214748364.8 \\
\text { to } \\
214748364.7 \\
(\mu \mathrm{~m}) \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
-21474.83648 \\
\text { to } \\
21474.83647
\end{array}
\] & 0 to 359.99999 & \[
\begin{gathered}
-2147483648 \\
\text { to } \\
2147483647
\end{gathered}
\] & \\
\hline & & Incremental method & & & & \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & \\
\hline (\%) & \multicolumn{2}{|l|}{Number of pitches} & \multicolumn{2}{|l|}{- Set when performing helical interpolation.} & - & \multicolumn{4}{|c|}{0 to 999} & \\
\hline
\end{tabular}

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Settings Made Using the Sequence Program (Indirect Setting)} & \multicolumn{2}{|l|}{Indirect Setting} & \multicolumn{3}{|l|}{Processing in Event of Setting Error} \\
\hline \multicolumn{4}{|c|}{Setting Range} & \multirow[t]{2}{*}{Possible/Not Possible} & \multirow[t]{2}{*}{Number of Words Used} & \multirow[t]{2}{*}{Error Item Data (Note-4) (Stored in D9190)} & \multirow[t]{2}{*}{Control Using Default Value} & \multirow[t]{2}{*}{Starting not Possible} \\
\hline mm & inch & degree & PULSE & & & & & \\
\hline \multicolumn{4}{|c|}{1 to 64} & \(\bigcirc\) & 1 & 1 & \(\bigcirc\) & \\
\hline \multicolumn{4}{|c|}{-} & \(\times\) & - & - & & \multirow{6}{*}{\(\bigcirc\)} \\
\hline \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \begin{tabular}{l}
-2147483648 \\
to 2147483647 \\
(\(\times 10^{-5}\) inch)
\end{tabular} & 0 to 35999999
\(\left(\times 10^{-5}\right.\) degree) & \[
\begin{aligned}
& -2147483648 \\
& \text { to } 2147483647
\end{aligned}
\] & \multirow{5}{*}{\(\bigcirc\)} & \multirow{5}{*}{2} & \multirow{3}{*}{\[
\begin{gathered}
\text { n03 } \\
\text { (Note-1) }
\end{gathered}
\]} & & \\
\hline \multicolumn{4}{|c|}{For other than speed/position switching control} & & & & & \\
\hline \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & & & & & \\
\hline \multicolumn{4}{|c|}{For speed/position switching control} & & & & & \\
\hline \[
\begin{gathered}
0 \text { to } 2147483647 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \[
\begin{aligned}
& 0 \text { to } 2147483647 \\
& \left(\times 10^{-5} \text { inch }\right)
\end{aligned}
\] & \begin{tabular}{l}
0 to 2147483647 \\
(\(\times 10^{-5}\) degree)
\end{tabular} & 0 to 2147483647 & & & & & \\
\hline 1 to 600000000 (\(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\)) & \begin{tabular}{l}
1 to 600000000 \\
(\(\times 10^{-3} \mathrm{inch} / \mathrm{min}\))
\end{tabular} & \[
\begin{gathered}
1 \text { to } 2147483647 \\
\left(\times 10^{-3} \text { degree } / \mathrm{min}\right)
\end{gathered}
\] & 1 to 10000000 (PLS/s) & \(\bigcirc\) & 2 & 4 & (Note-2) & (Note-3) \\
\hline \multicolumn{4}{|c|}{0 to 5000 (ms)} & \(\bigcirc\) & 1 & 5 & \(\bigcirc\) & \\
\hline \multicolumn{4}{|c|}{0 to 255} & \(\bigcirc\) & 1 & 6 & \(\bigcirc\) & \\
\hline \multicolumn{4}{|c|}{1 to 500 (\%)} & \(\bigcirc\) & 1 & 7 & \(\bigcirc\) & \\
\hline \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \(-2147483648\) to 2147483647 (\(\times 10^{-5}\) inch) & 0 to 35999999 (\(\times 10^{-5}\) degree) & \[
\begin{aligned}
& -2147483648 \\
& \text { to } 2147483647
\end{aligned}
\] & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{2×2} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { n08 } \\
\text { (Note-1) }
\end{gathered}
\]} & & \\
\hline \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & & & & & \\
\hline \[
\begin{gathered}
1 \text { to } 4294967295 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \[
\begin{aligned}
& 1 \text { to } 4294967295 \\
& \left(\times 10^{-5} \text { inch }\right)
\end{aligned}
\] & 0 to 35999999 (\(\times 10^{-5}\) degree) & 1 to 4294967295 & \multirow{2}{*}{\(\bigcirc\)} & \multirow{2}{*}{2} & \multirow{2}{*}{\[
\begin{gathered}
\text { n09 } \\
\text { (Note-1) }
\end{gathered}
\]} & & \multirow{2}{*}{\(\bigcirc\)} \\
\hline \[
\begin{gathered}
1 \text { to } 2147483647 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \[
\begin{aligned}
& 1 \text { to } 2147483647 \\
& \left(\times 10^{-5} \text { inch }\right)
\end{aligned}
\] & \begin{tabular}{l}
1 to 2147483647 \\
(\(\times 10^{-5}\) degree)
\end{tabular} & 1 to 2147483647 & & & & & \\
\hline \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647 \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \(-2147483648\) to 2147483647 (\(\times 10^{-5}\) inch) & 0 to 35999999 (\(\times 10^{-5}\) degree) & \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647
\end{gathered}
\] & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(2 \times 2\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { n010 } \\
\text { (Note-1) }
\end{gathered}
\]} & & \\
\hline \multicolumn{4}{|c|}{0 to \(\pm 2147483647\)} & & & & & \\
\hline \multicolumn{4}{|c|}{0 to 999} & \(\bigcirc\) & 1 & 28 & & \\
\hline
\end{tabular}

\section*{REMARKS}
(Note-1) : The "n" in n03, n08, n09, n10, indicates the axis number (1 to 32).
(Note-2) : When an error occurs because the speed limit value is exceeded, control is executed at the speed limit value.
(Note-3) : Applies when the commanded speed is "0".
(Note-4) : If there are multiple errors in the same program, the latest error item data is stored.

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

Table 6.3 Positioning Data (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Settings Made Using the Sequence Program (Indirect Setting)} & \multicolumn{2}{|l|}{Indirect Setting} & \multicolumn{3}{|l|}{Processing in Event of Setting Error} \\
\hline \multicolumn{4}{|c|}{Setting Range} & \multirow[t]{2}{*}{Possible/Not Possible} & \multirow[t]{2}{*}{Number of Words Used} & \multirow[t]{2}{*}{Error Item Data(note-4)
(Stored in D9190)} & \multirow[t]{2}{*}{Control Using Default Value} & \multirow[t]{2}{*}{Starting not Possible} \\
\hline mm & inch & degree & PULSE & & & & & \\
\hline 0 & 1 & 2 & 3 & \(\bigcirc\) & 1 & 11 & \multirow{9}{*}{\(\bigcirc\)} & \\
\hline 1 to 600000000
\(\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) (\(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\)) & 1 to 600000000 (\(\times 10^{-3} \mathrm{inch} / \mathrm{min}\)) & \[
\begin{gathered}
1 \text { to } 2147483647 \\
\left(\times 10^{-3} \text { degree } / \mathrm{min}\right)
\end{gathered}
\] & \[
\begin{aligned}
& 1 \text { to } 10000000 \\
& \text { (PLS/s) }
\end{aligned}
\] & \(\bigcirc\) & 2 & 12 & & \\
\hline \multicolumn{4}{|c|}{1 to 65535 (ms)} & 0 & 1 & 13 & & \\
\hline \multicolumn{4}{|c|}{1 to 65535 (ms)} & 0 & 1 & 14 & & \\
\hline \multicolumn{4}{|c|}{1 to 65535 (ms)} & \(\bigcirc\) & 1 & 15 & & \\
\hline \multicolumn{4}{|c|}{1 to 100 (\%)} & \(\bigcirc\) & 2 & 21 & & \\
\hline \multicolumn{4}{|c|}{1 to 500 (\%)} & \(\bigcirc\) & 1 & 16 & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Deceleration to a stop in accordance with the deceleration time \\
1: Deceleration to a stop in accordance with the rapid stop deceleration time
\end{tabular}} & \(\bigcirc\) & 1 & - & & \\
\hline \multicolumn{4}{|c|}{0 to 100000} & \(\bigcirc\) & 2 & 17 & & \\
\hline \multicolumn{4}{|c|}{1 to 32767} & \(\bigcirc\) & - & 18 & Controlled by K1 & \\
\hline \multicolumn{4}{|c|}{0 to 4095} & 0 & - & 19 & & \(\bigcirc\) \\
\hline 1 to 600000000 \(\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\)) & 1 to 600000000 (\(\times 10^{-3} \mathrm{inch} / \mathrm{min}\)) & \[
\begin{gathered}
1 \text { to } 2147483647 \\
\left(\times 10^{-3} \text { degree } / \mathrm{min}\right)
\end{gathered}
\] & \[
\begin{aligned}
& 1 \text { to } 10000000 \\
& \text { (PLS/s) }
\end{aligned}
\] & \(\bigcirc\) & 2 & 4 & (Note-2) & (Note-3) \\
\hline \multicolumn{4}{|c|}{-} & - & - & - & & \\
\hline \multicolumn{4}{|c|}{0 to 4095} & \(\bigcirc\) & 1 & - & & \\
\hline \multicolumn{4}{|c|}{-} & - & - & - & & \\
\hline \multicolumn{4}{|c|}{1 to 5000 (ms)} & \(\bigcirc\) & 1 & 13 & \(\bigcirc\) & \\
\hline
\end{tabular}

\section*{REMARKS}
(Note-2) : When an error occurs because the speed limit value is exceeded, control is executed at the speed limit value.
(Note-3) : Applies when the commanded speed is " 0 ".
(Note-4) : If there are multiple errors in the same program, the latest error item data is stored.

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.4 Method for Setting Positioning Data}

This section explains how to set the positioning data used in a servo program. There are two ways to set positioning data, as follows:
(1) Designating numerical values see Section 6.4.1
(2) Indirect designation using word devices see Section 6.4.2

It is possible to combine data setting by designating numerical values and indirect designation using word devices in the same servo program.

\subsection*{6.4.1 Setting by designating numerical values}

The method of setting by designating numerical values is a method whereby each positioning data item is set as a numerical value and becomes fixed data.
Data can only be set and corrected at a peripheral device.

Fig. 6.3 Example of Setting Positioning Data by Numerical Value Setting

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.4.2 Setting by using word devices (D, W)}

The method of setting by using word devices is a method whereby a word device (\(\mathrm{D}, \mathrm{W}\)) number is designated in the positioning data designated for the servo program.
By changing the contents (data) of the designated word device with the sequence program, it is possible to use the same servo program to execute more than one positioning control.
(1) Devices for setting indirect data

The devices that can be used for setting indirect data are data registers (D) and link registers (W). (Word devices other than data registers and link registers cannot be used.)
The data registers which can be used are indicated in the table below.
\begin{tabular}{|c|c|}
\hline Word Device & CPU \\
\hline D & 800 to 8191 \\
\hline W & 0 to 1 FFF \\
\hline
\end{tabular}

Fig. 6.4 Example of Setting Positioning Data by Numerical Value Setting
(2) Input of Positioning Data

In indirect setting with word devices, the word device data is input when the PCPU executes the servo program.
Accordingly, when positioning control is executed, after data is set in the device used for indirect setting, the servo program start request signal must be issued.

\section*{POINTS}
(1) It is not possible to indirectly set axis numbers using word devices with a servo program.
(2) Establish an interlock by using a start accept signal (M2001+n) to ensure that the device data designated for indirect setting is not changed until the designated axis has accepted the start command.
If the data is changed before the start command is accepted, positioning control in accordance.

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.5 Creating Sequence Programs to Start Servo Programs}

This section describes sequence programs that execute positioning control by using servo programs.

\subsection*{6.5.1 Case where the servo program is executed once only}

The general concept for a program that executes a designated servo program once only in response to the start request is shown in Figure 6.5.

The applications of 1) to 5) are indicated below.
1): Start request leading edge detection flag (devices that can be used: Y, M, L, S, B, F)
2): Start accept flag (set a number of flags corresponding to the number of axis designated in the servo program)
3): SVST instruction execution request flag (devices that can be used: Y, M, L, S, B, F)
4): Axis No. designated in the servo program
5): Started servo program No. (K0 to K4095)
,-- Example

A sequence program that issues a start request for servo program No. 10 - which executes circular interpolation with axis 3 and axis 4 - when X 000 comes ON , is shown below.
(1) Condition

The flags that can be used with sequence programs are indicated below.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Flag Name } & Device No. \\
\hline \multicolumn{2}{|c|}{ Flag for recording the start request } & M10 \\
\hline \multicolumn{2}{|c|}{ SVST instruction execution request flag } & M11 \\
\hline \multirow{2}{*}{ Start accept flag } & Axis 3 & M2003 \\
\cline { 2 - 3 } & Axis 4 & M2004 \\
\hline
\end{tabular}
(2) Sequence program example

Fig. 6.5 Sequence Program for Starting a Servo Program

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.5.2 Case where different servo programs are executed consecutively}

The general concept for a program that, on completion of positioning in accordance with a servo program executed in response to a start request, executes the next servo program, is shown in Figure 6.6. below.

Fig. 6.6 Sequence Program for Starting Servo Programs

\section*{6. SERVO PROGRAMS FOR POSITIONING CONTROL}

\subsection*{6.5.3 Case where the same servo program is executed repeatedly}

The general concept for a program that executes repeated positioning control in accordance with the same servo program is indicated in Figure 6.7.

Fig 6.7 Sequence Program For Starting a Servo Program

\section*{7. POSITIONING CONTROL}

\section*{7. POSITIONING CONTROL}

This section describes the positioning control methods.

\subsection*{7.1 Basics of Positioning Control}

This section describes the common items for positioning control, which is described in detail from Section 7.2.

\subsection*{7.1.1 Positioning speed}

The positioning speed is set using a servo program. See Section 6 for details about servo programs.
The real positioning speed is determined by the positioning speed setting in the servo program and the speed limit value, according to the following relationship:
- If positioning speed setting < speed limit value positioning occurs at set positioning speed.
- If positioning speed setting > speed limit value positioning occurs at speed limit value.

\section*{Examples}
(1) If the speed limit value is \(120,000 \mathrm{~mm} / \mathrm{min}\). and the positioning speed setting is \(100,000 \mathrm{~mm} / \mathrm{min}\)., the positioning speed is controlled as follows.

(2) If the speed limit value is \(100,000 \mathrm{~mm} / \mathrm{min}\). and the positioning speed setting is \(120,000 \mathrm{~mm} / \mathrm{min}\)., the positioning speed is controlled as follows.

\section*{7. POSITIONING CONTROL}

\subsection*{7.1.2 Positioning speed under interpolation control}

The positioning speed of the servo system CPU determines the travel speed of the controlled system.
(1) 1-axis linear control

Under 1-axis control, the travel speed is the positioning speed of the designated axis.
(2) Linear interpolation control

Under linear interpolation control, the controlled system is controlled at the set speed.
The positioning speed can be set for 2 to 4 -axis control using one of the following three methods:
- combined speed designation
- long-axis speed designation
- reference-axis speed designation

Details of the servo system CPU control for each of these three methods are described below.
(a) Resultant speed designation

The servo system CPU uses the travel value of each axis (D1 to D4) to calculate the positioning speed of each axis (\(\mathrm{V}_{1}\) to V 4) from the set positioning speed \((\mathrm{V})\) of the controlled system.
The positioning speed of the controlled system is called the combined speed.
Set the combined speed and the travel value of each axis in the servo program.

\section*{Example}

2-axes linear interpolation control

Axis 1 travel value:
D1 = 10,000 (PULSE)
Axis 2 travel value:
D2 = 15,000 (PULSE)

Combined speed:
\[
\mathrm{V}=7,000(\mathrm{PLS} / \mathrm{s})
\]

The servo system CPU calculates the positioning speed of each axis from the above conditions, using the following calculation formulas:

Axis 1 positioning speed: \(\mathrm{V} 1=\mathrm{V} \times \mathrm{D}_{1} / \sqrt{\mathrm{D} 1^{2}+\mathrm{Dr}^{2}}\)
Axis 2 positioning speed: \(\mathrm{V} 2=\mathrm{V} \times \mathrm{D} 2 / \sqrt{\mathrm{D}^{2}+\mathrm{D}^{2}}\)
(b) Long-axis speed designation

The control of each axis is based on the positioning speed (long-axis speed: V) set for the axis whose positioning address is the greatest distance from the current position.
The servo system CPU uses the travel value of each of the other axes (D1 to D 4) to calculate the positioning speed of each axis (V 1 to V 4). Set the long-axis speed and the travel value of each axis in the servo program.

\section*{- Example}

4-axes linear interpolation control
Axis 1 travel value:
D1 = 10,000 PLS
Axis 2 travel value:
D2 = 15,000 PLS
Axis 3 travel value:
\[
\text { D3 }=5,000 \text { PLS }
\]

Axis 4 travel value:
D4 = 20,000 PLS
Long-axis speed:
\[
\mathrm{V}=7,000 \mathrm{PLS} / \mathrm{s}
\]

In this example, the reference axis is Axis 4 , which has the greatest travel value. The positioning speed of Axis 4

\section*{[Program Example]}
 is the set long-axis positioning speed. The servo system CPU calculates the positioning speed of each of the other axes using the following calculation formulas:

Axis 1 positioning speed: \(\mathrm{V}_{1}=\mathrm{D}_{1} / \mathrm{D}_{4} \times \mathrm{V}\)
Axis 2 positioning speed: \(\mathrm{V} 2=\mathrm{D} 2 / \mathrm{D} 4 \times \mathrm{V}\)
Axis 3 positioning speed: \(\mathrm{V} 3=\mathrm{D} 3 / \mathrm{D} 4 \times \mathrm{V}\)
Conversions are conducted as follows if the control units are not identical for each axis.
1) Combination of axes set in millimeters and inches
a) If interpolation control units are millimeters
- Travel value : For axis set to inches, the travel value is converted to millimeters using the formula:inch set value \(\times\) \(25.4=\mathrm{mm}\) set value.
Speed : Speed control of each axis is based on the longaxis speed, which is the positioning speed of the axis with the greatest travel value after conversion.
b) If interpolation control units are inches
- Travel value : For axis set to millimeters, the travel value is converted to inches using the formula: mm set value \(\div 25.4\)
- Speed : Speed control of each axis is based on the longaxis speed, which is the positioning speed of the axis with the greatest travel value after conversion.
2) Discrepancy between interpolation control units and control units
- Travel value : The electronic gear converts the travel value for the axis to PULSE.
- Speed : Speed control of each axis is based on the longaxis speed, which is the positioning speed of the axis with the greatest travel value after conversion. For axis where interpolation control units and control units match, the electronic gear converts the positioning speed to units of PLS/s and this speed is used as the long-axis speed.

\section*{7. POSITIONING CONTROL}

\section*{POINTS}
(1) Speed limit value and positioning speed
- The set speed limit value applies to the long-axis speed.
- Note that the combined speed may exceed the speed limit value if long-axis speed designation is used.
;-- Example
During 2 -axes linear interpolation with the following settings, the combined speed exceeds the speed limit value.

Axis 1 travel value: 100 PLS
Axis 2 travel value: 200 PLS
Long-axis speed: 50 PLS/s
Speed limit value: 55 PLS /s
In this example, the reference axis is Axis 2 , which has the greatest travel value; therefore the set speed limit value applies to Axis 2.
In this case, the positioning speed of each axis and the combined speed are as follows:

Axis 1 positioning speed: \((100 / 200) \times 50=25 \mathrm{PLS} / \mathrm{s}\)
Axis 2 positioning speed: 50 PLS /s
Combined speed: \(\sqrt{25^{2}+50^{2}}=55.9\) PLS \(/ \mathrm{s}\)

The combined speed exceeds the speed limit value setting of 55 .
(2) Relationship between speed limit value, acceleration time, deceleration time, and rapid stop deceleration time
- The real acceleration time, deceleration time, and rapid stop deceleration time are determined by the long-axis speed setting.

\section*{7. POSITIONING CONTROL}
(c) Reference-axis speed designation

The servo system CPU uses the travel value of each axis (D1 to D4) to calculate the positioning speed of each axis (V 1 to V 4) from the set positioning speed of the reference axis (reference axis speed: V).
Set the reference axis number, reference axis speed, and the travel value of each axis in the servo program.

\section*{Example}

4-axes linear interpolation control
Axis 1 travel value:
D1 = 10,000 PLS
Axis 2 travel value:
D2 = 15,000 PLS
Axis 3 travel value:
D3 \(=5,000\) PLS
Axis 4 travel value:
D4 = 20,000 PLS
Reference axis speed:
\(\mathrm{V}=7,000 \mathrm{PLS} / \mathrm{s}\)
Reference axis number: Axis 4
In this example, Axis 4 is set as the reference axis and the control is based on the positioning speed of Axis 4.

The servo system CPU calculates the positioning speed of each of the other axes using the following calculation formulas:

Axis 1 positioning speed: \(\mathrm{V}_{1}=\mathrm{D} 1 / \mathrm{D} 4 \times \mathrm{V}\)
Axis 2 positioning speed: \(\mathrm{V} 2=\mathrm{D} 2 / \mathrm{D} 4 \times \mathrm{V}\)
Axis 3 positioning speed: \(\mathrm{V} 3=\mathrm{D} 3 / \mathrm{D} 4 \times \mathrm{V}\)

\section*{7. POSITIONING CONTROL}

\section*{POINTS}
(1) Reference axis speed and positioning speed of other axes
- Note that the positioning speed of an axis with a greater travel value than the reference axis will exceed the set reference axis speed.
(2) Indirect designation of reference axis
- The reference axis can be indirectly designated using word devices D and W. See Section 6.4.2.
(3) Relationship between speed limit value, acceleration time, deceleration time, and rapid stop deceleration time
- The real acceleration time, deceleration time, and rapid stop deceleration time are determined by the reference axis speed setting.

(3) Circular interpolation control Under circular interpolation control, the angular speed is controlled to the set speed.

\section*{7. POSITIONING CONTROL}

\subsection*{7.1.3 Control units for 1-axis positioning control}

Positioning control of 1 -axis is conducted in the control units designated in the fixed parameters.
(The control unit designation in the parameter block is ignored.)

\subsection*{7.1.4 Control units for interpolation control}
(1) The interpolation control units designated in the parameter block are checked against the control units designated in the fixed parameters.
For interpolation control, the result of the interpolation control units designated in the parameter block differing from the control units designated in the fixed parameters are listed in the following table.
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Interpolation Control Units in Parameter Block } & \multirow{2}{*}{\multicolumn{1}{c|}{ Start Method }}
\end{tabular}
(2) The possible combinations of control units for interpolation control for the axis is shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathbf{m m}\) & inch & degree & PULSE \\
\hline mm & \(1)\) & \(2)\) & \(3)\) & \(3)\) \\
\hline inch & \(2)\) & \(1)\) & \(3)\) & \(3)\) \\
\hline degree & \(3)\) & \(3)\) & \(1)\) & \(3)\) \\
\hline PULSE & \(3)\) & \(3)\) & \(3)\) & \(1)\) \\
\hline
\end{tabular}

\section*{Remarks}
1) Same units
2) Combination of mm and inches
3) Discrepancy
(a) Same units (1))

Positioning is conducted using position commands calculated from the address, travel value, positioning speed, and electronic gear.

\section*{POINT}
(1) Circular interpolation control

If control units for one axis are degrees, use degrees also for the other axis.
(b) Combination of millimeters and inches (2))
- If interpolation control units are millimeters, positioning is conducted using position commands calculated from the address, travel value, positioning speed, and electronic gear, which have been converted to millimeters using the formula: inch set value \(\times 25.4=\mathrm{mm}\) set value.
- If interpolation control units are inches, positioning is conducted using position commands calculated from the address, travel value, positioning speed, and electronic gear, which have been converted to inches using the formula: millimeter set value \(\div 25.4=\) inch set value.
(c) Discrepancy (3))
- If a discrepancy exists between interpolation control units and the control units, the travel value and positioning speed are calculated for each axis.
a) The electronic gear converts the travel value for the axis to PULSE.
b) For axis where the units match, the electronic gear converts the positioning speed to units of PLS /s.
Positioning is conducted using position commands calculated from travel values converted to PULSES and speeds and electronic gear converted to PULSE per second.
- If the interpolation control units match for two or more axes during linear interpolation with 3-axes or more, the positioning speed is calculated using the electronic gear for the axis with the lowest number.

\section*{7. POSITIONING CONTROL}

\subsection*{7.1.5 Control using degrees as control units}

If the control units are degrees, the following items differ from when other control units are set.
(1) Current address

When degrees are set, the current addresses become ring addresses between \(0^{\circ}\) and \(360^{\circ}\).

(2) Stroke limit valid/invalid setting

For degree settings, the upper limit value and lower limit value lie in the range between \(0^{\circ}\) and \(359.99999^{\circ}\).
(a) If the stroke limit is valid

If the stroke limit is valid, set the stroke limit upper limit value and lower limit value in a clockwise direction.

1) For travel in area \(A\), set the limit values as follows:
a) Stroke limit lower limit value: \(315.00000^{\circ}\)
b) Stroke limit upper limit value: \(90.00000^{\circ}\)
2) For travel in area \(B\), set the limit values as follows:
a) Stroke limit lower limit value: \(90.00000^{\circ}\)
b) Stroke limit upper limit value: \(315.00000^{\circ}\)
(b) If the stroke limit is invalid

If the stroke limit is invalid, set the stroke limit upper limit value equal to the lower limit value.
The stroke limit settings are ignored during control.

\section*{POINT}
(1) Circular interpolation is not possible for axis set with the stroke limit invalid.
(2) After you have changed the upper/lower limit value with the stroke limit valid, perform zeroing.
(3) When the stroke limit is valid in an incremental system, perform zeroing after power-on.

\section*{7. POSITIONING CONTROL}
(3) Positioning control

Positioning control using degrees as control units is described below.
(a) Absolute data method (ABS \(\square\) instructions)

The absolute data method uses the current value as reference to position the axis in the shortest distance to the designated address.

\section*{Examples}
(1) Positioning occurs clockwise to travel from the current value of \(315.00000^{\circ}\) to \(0^{\circ}\).
(2) Positioning occurs counterclockwise to travel from the current value of \(0^{\circ}\) to \(315.00000^{\circ}\).

\section*{POINTS}
(1) In some cases the stroke limit settings determine clockwise or counterclockwise rotation and absolute data method positioning in the shortest distance may not be possible.

\section*{,--. Example}

Travel from the current value \(0^{\circ}\) to \(315.00000^{\circ}\) must be clockwise if the stroke limit lower limit value is set to \(0^{\circ}\) and the upper limit value is set to \(345.00000^{\circ}\).

(2) Set positioning addresses in the range between \(0^{\circ}\) and \(360^{\circ}\). Use the incremental method for positioning in excess of one revolution.
(b) Incremental method (INC \(\square\) instructions)

The incremental method positions the axis by a designated travel value in the designated direction.
The travel direction is designated by the sign of the travel value, as follows:
1) Positive travel value clockwise rotation
2) Negative travel value counterclockwise rotation

\section*{POINT}

The incremental method permits positioning in excess of \(360^{\circ}\).

\section*{7. POSITIONING CONTROL}

\subsection*{7.1.6 Stop processing and restarting after a stop}

This section describes the stop processing after a stop cause is input during positioning, and restarting after a stop.
(1) Stop processing
(a) Stop processing methods

Stop processing during positioning depends on the type of stop cause which was input.
1) Deceleration stop Decelerates and stops according to the stop (Process 1) deceleration time parameter in the parameter block.

2) Rapid stop

Decelerates and stops according to the rapid stop (Process 2) deceleration time parameter in the parameter block.

3) Immediate stop .
(Process 3) \(\qquad\) Stops without deceleration processing.

(b) Order of priority for stops

The order of priority for stops when a stop cause is input is as follows:
\[
\text { Process } 1 \text { < Process } 2 \text { <Process } 3
\]

Example
A rapid stop (Process 2) is started if a rapid stop cause is input during one of the following types of deceleration stop processing:
- after automatic deceleration starts during positioning control;
- during deceleration after JOG start signal turns OFF;
- during deceleration stop processing due to a stop cause (Process 1).

\section*{7. POSITIONING CONTROL}
(c) Stop commands and stop causes

Some stop commands and stop causes affect individual axis and others affect all axes.
However, during interpolation control, stop commands and stop causes which affect individual axis also stop the interpolation axis.
For example, both Axis 1 and Axis 2 stop after input of a stop command or stop cause during interpolation control of Axis 1 and Axis 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Stop Cause} & \multirow[b]{2}{*}{Individual/All Axes} & \multicolumn{5}{|c|}{Stop} & \multirow[b]{2}{*}{Error Processing} \\
\hline No. & & & Positioning Control & \begin{tabular}{l}
Speed \\
Control
\end{tabular} & Jog Operation & Zeroing & Manual Pulse Generator & \\
\hline 1 & External STOP input ON & \multirow{6}{*}{Individual} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Process 1 or Process 2 \\
\(\left[\begin{array}{l}\text { According to deceleration processing on } \\ \text { STOP input parameter in parameter block. }\end{array}\right]\)
\end{tabular}} & \multirow{14}{*}{Process 3} & \multirow{9}{*}{Serious error during zeroing only} \\
\hline 2 & Stop command M3200+20n ON & & \multicolumn{4}{|l|}{Process 1} & & \\
\hline 3 & Rapid stop command M3201+20n ON & & \multicolumn{4}{|l|}{Process 2} & & \\
\hline 4 & External FLS input OFF & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { Process } 1 \text { or Process } 2 \\
{\left[\begin{array}{l}
\text { According to deceleration processing on } \\
\text { STOP input parameter in parameter block. }
\end{array}\right]}
\end{array}
\]}} & & \\
\hline 5 & External RLS input OFF & & & & & & & \\
\hline 6 & Servo error detect M2408+20n ON & & Process & & & & & \\
\hline 7 & PLC ready M2000 OFF & \multirow{7}{*}{All} & \multicolumn{4}{|l|}{Process 1} & & \\
\hline 8 & Emergency stop from exterior \({ }^{(\text {Note-2) }}\), BREAK key pressed & & \multicolumn{4}{|l|}{Process 2} & & \\
\hline 9 & Servo system CPU stop & & \multicolumn{4}{|l|}{Process 1} & & \\
\hline 10 & Servo system reset & & \multicolumn{4}{|l|}{Process \(3^{\text {(Note-1) }}\)} & & - \\
\hline 11 & PCPU WDT error & & \multicolumn{4}{|l|}{Process \(3^{(\text {Note-1) }}\)} & & M9073 (WDT error) ON \\
\hline 12 & SCPU WDT error & & \multicolumn{4}{|l|}{Process 1} & & - \\
\hline 13 & Servo system CPU power off & & \multicolumn{4}{|l|}{Process \(3{ }^{(\text {Note-1) }}\)} & & - \\
\hline 14 & Servo amplifier power off & Individual & \multicolumn{4}{|l|}{Process \(3^{(\text {Note-1) }}\)} & & Serious error at startup (no servo) \\
\hline 15 & Speed changed to zero & \[
\begin{aligned}
& \hline \text { Individual }{ }^{\text {(Note- }} \\
& \text { 3) }
\end{aligned}
\] & \multicolumn{4}{|l|}{Process 1} & & - \\
\hline
\end{tabular}
(Note-1) : Emergency stop due to H/W
(Note-2) : Test mode
(Note-3) : Applies to all axes set to speed \(=0\) in servo program.

\section*{7. POSITIONING CONTROL}
(2) Restarting after a Stop
(a) Control cannot be restarted after a stop command or stop cause (except changing speed to zero).
However, restarting is possible using the VSTART instruction after a stop due to the external STOP input, the stop command (M3200+20n) turning ON, or the rapid stop command (M3201+20n) turning ON during speed/position switching control.
(b) When the stop is caused by a speed change to speed "0" When a speed change to speed " 0 " is executed in the CHGV instruction, operation can be restarted by executing another speed change to a speed other than " 0 ".

1) The start accept flag M2001+n remains ON after a stop due to changing the speed to zero.
2) Restart after changing the speed again.
3) However, control cannot be restarted after the speed is changed if the start accept flag M2001+n is turned OFF due to the stop command (M3200+20n) turning ON.
(3) Continuing positioning control

This section describes the method to continue control from the servo program number where the stop was applied by turning ON the external STOP input, the stop command (M3200+20n), or the rapid stop command (M3201+20n).
(a) 1-axis linear control/2 or 3-axes linear interpolation control
1) Absolute data method....... As a target address is designated, positioning control is possible from the stop address to the target address.

2) Incremental method

Positioning control of the travel value from the stop address.

To use the incremental method to travel to the original address (calculated from start address + designated travel value) from address 2, requires the following processing in the servo program and sequence program.

\section*{[Servo Program]}

Use word devices for indirect designation of the travel value in the positioning control servo program.

\section*{7. POSITIONING CONTROL}
[Processing in the Sequence Program]
1. Before starting, transfer the start address to the servo system CPU word devices.
2. Add the travel value to the start address to calculate the target address.
3. Subtract the stop address from the target address to calculate the residual travel value.
4. Store the residual travel value in the servo program travel value register.
5. Run the servo program from the sequence program.

\section*{7. POSITIONING CONTROL}

\subsection*{7.1.7 Acceleration and deceleration processing}

Acceleration and deceleration are processed by the two methods described below.
(1) Trapezoidal acceleration and deceleration processing

The conventional linear acceleration and deceleration processing. The acceleration and deceleration graph resembles a trapezoid, as shown in the diagram below.
The acceleration and deceleration times are set automatically.

(2) S-curve acceleration and deceleration processing

The S-curve ratio is set as a parameter to provide gentler acceleration and deceleration than trapezoidal processing. The acceleration and deceleration graph is sinusoidal, as shown in the diagram below.
Set the S-curve ratio in the parameter block (see Section 4.4.2) or in a servo program.

As shown in the diagram below, the S-curve ratio sets the part of the sine curve used to produce the acceleration and deceleration curve.

\section*{7. POSITIONING CONTROL}

The S-curve ratio can be set by a servo program using one of two methods.
(a) Direct designation

The S-curve ratio is designated directly as a numeric value from 0 to 100.

(b) Indirect designation

The S-curve ratio is set by the contents of the data registers.
The available data registers are shown below.
\begin{tabular}{|c|c|}
\hline Word Device & Usable Device \\
\hline D & 800 to 8191 \\
\hline W & 0 to \(1 F F F\) \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}

\subsection*{7.2 1-Axis Linear Positioning Control}

Positioning control of the designated axis from the current stop position to a fixed position.
Positioning control uses ABS-1 (absolute data method) and INC-1 (incremental method) servo instructions.

\section*{[Control Details]}

\section*{Control with ABS-1 (absolute data method)}
(1) Positioning control from the current stop address (pre-positioning address) to the designated address, using the home position as the reference.
(2) The travel direction is determined from the current stop address and the designated address.

\section*{Example}

The travel direction is shown below if the current stop address is 1000, and the designated address is 8000 .
Come position

Fig.7.1 Positioning by Absolute Data Method

\section*{7. POSITIONING CONTROL}

\section*{Control with INC-1 (incremental method)}
(1) Positioning control of a designated travel value from the current stop position.
(2) The travel direction is designated by the sign of the travel value, as follows:
- Positive travel value
forward direction (increased address)
- Negative travel value. reverse direction (decreased address)

Fig.7.2 Positioning by Incremental Method

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts positioning control using servo program No. 0 under the conditions below.
(1) System configuration 1 -axis linear positioning control of Axis 4.

(2) Positioning details

The positioning by servo program No. 0 is shown in the diagram below. In this example, Axis 4 is used in servo program No. 0.

(3) Operation timing

The operation timing for servo program No. 0 is shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program example

The servo program No. 0 for positioning control is shown below.

(5) Sequence program example

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.3 2-Axes Linear Interpolation Control}

Linear interpolation control from the current stop position with the 2-axes designated in the sequence program positioning commands. 2-axes linear interpolation control uses ABS-2 (absolute data method) and INC-2 (incremental method) servo instructions.

\section*{[Control Details]}

\section*{Control with ABS-2 (absolute data method)}
(1) Linear interpolation with 2-axes from the current stop address \(\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)\) to the designated address (\(\mathrm{X}_{2}, \mathrm{Y}_{2}\)), using the home position as the reference.
(2) The travel direction is determined from the stop addresses and designated addresses for the respective axes.

Fig.7.3 Positioning by Absolute Data Method

Control with INC-2 (incremental method)
(1) Positioning control from the current stop position to the position which is the resultant of the designated travel directions and travel values of the respective axis.
(2) The travel direction of each axis is designated by the sign of the travel value, as follows:
- Positive travel value \(\qquad\) forward direction (increased address)
- Negative travel value. reverse direction (decreased address)

Fig.7.4 Positioning by Incremental Method

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts 2-axes linear interpolation control under the conditions below.
(1) System configuration

2-axes linear interpolation control of Axis 3 and Axis 4.

(2) Positioning details

The positioning by the Axis 3 and Axis 4 servo motors is shown in the diagram below.

(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multirow{2}{*}{ Item } & Servo Program Number \\
\cline { 2 - 2 } & No. 11 \\
\hline Positioning speed & 30000 \\
\hline
\end{tabular}
(b) Positioning start. \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for 2-axes linear interpolation control is shown below.

(5) Servo program

The servo program No. 11 for 2-axes linear interpolation control is shown below.

(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.4 3-Axes Linear Interpolation Control}

Linear interpolation control from the current stop position with the 3-axes designated in the sequence program positioning commands.

O : Must be set

\section*{[Control Details]}

\section*{Control with ABS-3 (absolute data method)}
(1) Linear interpolation with 3 -axes from the current stop address \(\left(X_{1}, Y_{1}, Z_{1}\right)\) to the designated address (\(\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}\)), using the home position as the reference.
(2) The travel direction is determined from the stop addresses and designated addresses for the respective axes.

Fig.7.5 Positioning by Absolute Data Method
7-27

Control with INC-3 (incremental method)
(1) Positioning control from the current stop position to the position which is the resultant of the designated travel directions and travel values of the respective axis.
(2) The travel direction of each axis is designated by the sign of the travel value, as follows:
- Positive travel value \(\qquad\) forward direction (increased address)
- Negative travel value. reverse direction (decreased address)

Fig.7.6 Positioning by Incremental Method

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts 3-axes linear interpolation control under the conditions below.
(1) System configuration

3-axes linear interpolation control of Axis 1, Axis 2, and Axis 3.

(2) Positioning details

The positioning by the Axis 1 , Axis 2 , and Axis 3 servomotors is shown in the diagram below.

(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Servo Program Number \\
\cline { 2 - 2 } & No. 21 \\
\hline Positioning method & Absolute data \\
\hline Positioning speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for 3-axes linear interpolation control is shown below.

(5) Servo program

The servo program No. 21 for 3-axes linear interpolation control is shown below.

\section*{7. POSITIONING CONTROL}
(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.5 4-Axes Linear Interpolation Control}

Linear interpolation control from the current stop position with the 4-axes designated in the sequence program positioning commands.
\begin{tabular}{|c|}
\hline \multirow{4}{*}{Servo Instruction} & \multirow{4}{*}{Positioning Method} & \multirow{4}{*}{Number of Controllable Axes} & \multicolumn{21}{|c|}{Items Set by Peripherals} & \\
\hline & & & \multicolumn{7}{|c|}{Common} & \multicolumn{3}{|c|}{Arc} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{2}{|l|}{Others} & \\
\hline & & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{n}{x}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \pm \\
& \stackrel{0}{\circ} \\
& 0 \\
& \dot{\Sigma}
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Radius} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{7
5
은
0
0} & \multirow[t]{2}{*}{} & & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{¢}} \\
\hline & & & & \\
\hline ABS-4 & Absolute data & \multirow[b]{2}{*}{4} & \multirow[b]{2}{*}{\(\Delta\)} & \\
\hline INC-4 & Incremental & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & \multicolumn{3}{|l|}{} & \(\Delta\) & & \(\Delta\) & \(\Delta\) & \(\Delta\) & OK \\
\hline \multicolumn{25}{|r|}{\begin{tabular}{l}
O : Must be set \\
\(\Delta\) : Set if required
\end{tabular}} \\
\hline
\end{tabular}

\section*{[Control Details]}

Positioning control which starts and completes positioning of the 4-axes simultaneously.

\section*{7. POSITIONING CONTROL}
[Program Example]
This program conducts 4-axes linear interpolation control under the conditions below.
(1) System configuration

4 -axes linear interpolation control of Axis 1, Axis 2, Axis 3, and Axis 4.

(2) Positioning details

The positioning by the Axis 1 , Axis 2 , Axis 3 , and Axis 4 servomotors is shown in the diagram below.

Fig.7.7 Axis Configuration

\section*{7. POSITIONING CONTROL}

Fig.7.8 Positioning by 4-axes Linear Interpolation Control
(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Item }} & Servo Program Number \\
\cline { 2 - 2 } & No. 22 \\
\hline Positioning method & Incremental \\
\hline Positioning speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start. \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)
(4) Operation timing

The operation timing for 4-axes linear interpolation control is shown below.

\section*{7. POSITIONING CONTROL}
(5) Servo program

The servo program No. 22 for 4-axes linear interpolation control is shown below.

(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.6 Circular Interpolation Using Auxiliary Point Designation}

Circular interpolation control by designating the end point address and auxiliary point address (a point on the arc).
Circular interpolation control using auxiliary point designation uses ABS \(\downarrow\) (absolute data method) and INC \(\pitchfork\) (incremental method) servo instructions.

O : Must be set
\(\Delta\) : Set if required

\section*{[Control Details]}

\section*{Control with ABS \(\ltimes\) (absolute data method).}
(1) Circular interpolation from the current stop address (pre-positioning address) through the designated auxiliary point address to the end point address, using the home position as the reference.
(2) The center of the arc is the point of intersection of the perpendicular bisectors of the start point address (current stop address) to the auxiliary point address, and the auxiliary point address to the end point address.

Fig.7.9 Circular Interpolation Control by Absolute Data Method

\section*{7. POSITIONING CONTROL}
(3) The setting range for the end point address and auxiliary point address is \(-2^{31}\) to \(+2^{31}-1\).
(4) The maximum arc radius is \(2^{32}-1\).

Fig.7.10 Maximum Arc

\section*{Control with INC \(\underset{ }{+}\) (incremental method)}
(1) Circular interpolation from the current stop address (pre-positioning address) through the designated auxiliary point address to the end point address.
(2) The center of the arc is the point of intersection of the perpendicular bisectors of the start point address (current stop address) to the auxiliary point address, and the auxiliary point address to the end point address.

Fig.7.11 Circular Interpolation Control by Incremental Method
(3) The setting range for the travel value to the end point address and auxiliary point address is 0 to \(\pm\left(2^{31}-1\right)\).
(4) The maximum arc radius is \(2^{31}-1\).

If the designated end point and auxiliary point result in a radius more than \(2^{31}\) 1 , an error occurs at the start and error code 107 is stored in the data register.

Fig.7.12 Maximum Arc

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts circular interpolation control using auxiliary point designation under the conditions below.
(1) System configuration

Circular interpolation control of Axis 1 and Axis 2 using auxiliary point designation.

(2) Positioning details

The positioning by the Axis 1 and Axis 2 servomotors is shown in the diagram below.

(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|c|c|}
\hline \multirow{2}{*}{ Item } & Servo Program Number \\
\cline { 2 - 2 } & No. 31 \\
\hline Positioning method & Absolute data \\
\hline Positioning speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start \(\qquad\) leading edge of \(\mathrm{XOOO}(\mathrm{OFF} \rightarrow \mathrm{ON})\)

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for circular interpolation control using auxiliary point designation is shown below.

(5) Servo program

The servo program No. 31 for circular interpolation control using auxiliary point designation is shown below.

(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.7 Circular Interpolation Using Radius Designation}

Circular interpolation control by designating the end point and arc radius.
Circular interpolation control using radius designation uses ABS \(\subset, A B S \subset \sim\),
ABS \(\subset\), and \(\operatorname{ABS} \subset\) (absolute method) and \(\operatorname{INC} \curvearrowright, \operatorname{INC} \subset, \operatorname{INC} \subset \mathcal{A}\), and INC \(\cup\) (incremental method) servo instructions.

\section*{7. POSITIONING CONTROL}

\section*{[Control Details]}

Details of control with the servo instructions are shown in the table below.

```

Control with ABS ^, ABS ~, ABS, < , and ABS `
(absolute data method)

```
(1) Circular interpolation of an arc of the designated radius from the current stop address (pre-positioning address) to the designated end point address, using the home position as the reference.
(2) The center of the arc lies at the point of intersection of the designated radius and the perpendicular bisector of the start point address (current stop address) to the end point address.

Fig.7.13 Circular Interpolation Control by Absolute Data Method
(3) The setting range for the end point address is \(-2^{31}\) to \(\left(2^{31}-1\right)\).
(4) The maximum arc radius is \(2^{31}-1\).

Fig.7.14 Maximum Arc

Control with INC \(\curvearrowright\), INC \(\curvearrowright\), INC , «, and INC \(\smile\) (incremental method)
(1) Circular interpolation of an arc of the designated radius from the current stop address \((0,0)\) to the designated end point address.
(2) The center of the arc lies at the point of intersection of the designated radius and the perpendicular bisector of the start point address (current stop address) to the end point address.

Fig.7.15 Circular Interpolation Control by Incremental Method
(3) The setting range for the end point address is \(-2^{31}\) to \(\left(2^{31}-1\right)\).
(4) The maximum arc radius is \(2^{31}-1\).

Fig.7.16 Maximum Arc

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts circular interpolation control using radius designation under the conditions below.
(1) System configuration

Circular interpolation control of Axis 1 and Axis 2 using radius designation.

(2) Positioning details

The positioning by the Axis 1 and Axis 2 servomotors is shown in the diagram below.

(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|c|c|}
\hline \multirow{2}{*}{ Item } & Servo Program Number \\
\cline { 2 - 2 } & No. 41 \\
\hline Positioning method & Absolute data \\
\hline Positioning speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start. \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for circular interpolation control using radius designation is shown below.

(5) Servo program

The servo program No. 41 for circular interpolation control using radius designation is shown below.

(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.8 Circular Interpolation Using Center Point Designation}

Circular interpolation control by designating the end point and arc center point. Circular interpolation control using center point designation uses ABS \(\cap\) and ABS \(\mathcal{\bullet}\) (absolute data method) and INC \(\odot \sim\) and INC \(\mathcal{\bullet}\) (incremental method) servo instructions.

\section*{[Control Details]}

Details of control with the servo instructions are shown in the table below.
\begin{tabular}{|c|c|c|c|}
\hline Instruction & Servomotor Direction of Rotation & Max. Controllable Angle of Arc & Positioning Path \\
\hline ABS \(\sim \sim\) & \multirow[t]{2}{*}{Clockwise} & \multirow{4}{*}{\(0^{\circ}<\theta<360^{\circ}\)} & \\
\hline INC \(\curvearrowright\) & & & Center point \\
\hline ABS \(\cdot 4\) & \multirow{2}{*}{Counterclockwise} & & Center point \\
\hline INC \({ }^{-}\) & & & \begin{tabular}{l}
Positioning \\
path
\end{tabular} \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}

\section*{Control with \(\mathrm{ABS} \curvearrowright \cdot\) and \(\mathrm{ABS} \odot(\) (absolute data method)}
(1) Circular interpolation of an arc with a radius equivalent to the distance between the start point and center point, between the current stop address (prepositioning address used as the start point address) and the designated end point address, using the home position as the reference.

Fig.7.17 Circular Interpolation Control by Absolute Date Method
(2) To conduct positioning control of a full circle, divide the circular interpolation control into two operations.

Fig.7.18 Positioning Control of a Full Circle
(3) The setting range for the end point address and arc center point is \(-2^{31}\) to \(\left(2^{31}-1\right)\).
(4) The maximum arc radius is \(2^{32}-1\).

Fig.7.19 Maximum Arc

\section*{7. POSITIONING CONTROL}

Control with INC \(\curvearrowright\) and INC \(\odot(\) (incremental method)
(1) Circular interpolation of an arc from the current stop address (start point address, 0,0) with a radius equivalent to the distance between the start point \((0,0)\) and center point.

Fig.7.20 Circular Interpolation Control by Incremental Method (INC \(\curvearrowright\))
(2) To conduct positioning control of a full circle, divide the circular interpolation control into two operations.

Fig.7.21 Positioning Control of a Full Circle
(3) The setting range for the center point and travel value to the end point is 0 to \(\pm\left(2^{31}-1\right)\).
(4) The maximum arc radius is \(2^{31}-1\).

If the designated end point and center point result in a radius more than \(2^{31}-1\), an error occurs at the start and error code 109 is stored in the data register.

Fig.7.21 Maximum Arc Radius

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts circular interpolation control using center point designation under the conditions below.
(1) System configuration

Circular interpolation control of Axis 1 and Axis 2 using center point designation.

(2) Positioning details

The positioning by the Axis 1 and Axis 2 servomotors is shown in the diagram below.
```

Axis 2 positioning direction
(Forward direction)
Start address

```
(3) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multirow{2}{*}{ Item } & Servo Program Number \\
\cline { 2 - 2 } & No. 51 \\
\hline Positioning method & Absolute data \\
\hline Positioning speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start. \(\qquad\) leading edge of \(\mathrm{X} 000(\mathrm{OFF} \rightarrow \mathrm{ON})\)

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for circular interpolation control using center point designation is shown below.

(5) Servo program

The servo program No. 51 for circular interpolation control using center point designation is shown below.

(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.9 1-Axis Fixed-Pitch Feed Control}

Positioning control to move the axis designated with the sequence program positioning commands by the designated travel value from the current stop position.
Fixed-pitch feed control uses the FEED-1 servo instruction.
\begin{tabular}{|c|}
\hline \multirow{4}{*}{Servo Instruction} & \multirow{4}{*}{Positioning Method} & \multirow{4}{*}{Number of Controllable Axes} & \multicolumn{21}{|c|}{Items Set by Peripherals} & \\
\hline & & & \multicolumn{7}{|c|}{Common} & \multicolumn{3}{|c|}{Arc} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{2}{|l|}{Others} & \\
\hline & & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{n}{\underset{\alpha}{x}}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline 1 \\
& 1 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\(\stackrel{n}{\stackrel{3}{\square}}\)} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Torque Limit Value
Deceleration Processing on Stop Input}} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{(1)}} \\
\hline & \\
\hline FEED-1 & Incremental & 1 & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & \(\Delta\) & \(\Delta\) & OK \\
\hline & \begin{tabular}{l}
Must \\
Set if
\end{tabular} & req & \\
\hline
\end{tabular}

\section*{[Control Details]}
(1) Positioning control through the designated travel value from the current stop position (0).
(2) The travel direction is designated by the sign of the travel value, as follows:
- Positive travel value forward direction (increased address)
- Negative travel value. reverse direction (decreased address)

Fig.7.23 1-Axis Fixed-Pitch Feed Control

\section*{POINT}

Do not set the travel value to zero for fixed-pitch feed control. If the travel value is set to zero, fixed-pitch feed ends with no feed taking place.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts repeated 1-axis fixed-pitch feed control under the conditions below.
(1) System configuration

Fixed-pitch feed control of Axis 4.

(2) Fixed-pitch feed control conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & No. 300 \\
\hline Controlled axis & Axis 4 \\
\hline Control speed & 10000 \\
\hline Travel value & 100000 \\
\hline
\end{tabular}
(b) Fixed-pitch feed control start command \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)
(c) Fixed-pitch feed control end command
leading edge of X001
(OFF \(\rightarrow\) ON)
(3) Operation timing

The operation timing for fixed-pitch feed control is shown below.

PLC ready (M2000)
All axes servo start command (M2042)
All axes servo start accept frag
(M2049)
Start command (X000)
SVST instruction
Axis 4 start accept flag (M2004)
End command (X001)

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 300 for fixed-pitch feed control is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.10 Fixed-Pitch Feed Control Using 2-Axes Linear Interpolation}

Fixed-pitch feed control using 2-axes linear interpolation from the current stop position with the 2-axes designated in the sequence program positioning commands.
Fixed-pitch feed control using 2-axes linear interpolation uses the FEED-2 servo instruction.

\section*{[Control Details]}
(1) Positioning control from the current stop position (0) to the position which is the resultant of the designated travel directions and travel values of the respective axes.
(2) The travel direction is designated by the sign of the travel value, as follows:
- Positive travel value \(\qquad\) forward direction (increased address)
- Negative travel value \(\qquad\) reverse direction (decreased address)

Fig.7.24 Fixed-Pitch Feed Control Using 2-Axes Linear Interpolation

\section*{7. POSITIONING CONTROL}

\section*{POINT}
(1) Do not set the travel value to zero for fixed-pitch feed control.

The following results if the travel value is set to zero:
(a) If both axes are set to zero, the fixed-pitch feed ends with no feed taking place.
(b) If the travel value is set to zero for one axis only, fixed-pitch feed control will not occur at the normal positioning speed for the axis set to a non-zero travel value.

\section*{[Program Example]}

This program conducts fixed-pitch feed control using 2-axes linear interpolation under the conditions below.
(1) System configuration

Fixed-pitch feed control using 2-axes linear interpolation of Axis 2 and Axis 3.

(2) Positioning conditions

The fixed-pitch feed control conditions are shown below.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{2}{c|}{ Setting } \\
\hline Servo program number & \multicolumn{2}{c|}{ No. 310 } \\
\hline Positioning speed & \multicolumn{2}{|c|}{10000} \\
\hline Controlled axis & Axis 2 & Axis 3 \\
\hline Travel value & 500000 & 300000 \\
\hline
\end{tabular}
(a) Fixed-pitch feed control start command....... leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing

The operation timing for fixed-pitch feed control using 2-axes linear interpolation is shown below.

(4) Servo program

The servo program No. 310 for fixed-pitch feed control using 2-axes linear interpolation is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.11 Fixed-Pitch Feed Control Using 3-Axes Linear Interpolation}

Fixed-pitch feed control using 3-axes linear interpolation from the current stop position with the 3-axes designated in the sequence program positioning commands.
Fixed-pitch feed control using 3-axes linear interpolation uses the FEED-3 servo instruction.

\section*{[Control Details]}
(1) Positioning control from the current stop position (0) to the position which is the resultant of the designated travel directions and travel values of the respective axes.
(2) The travel direction is designated by the sign of the travel value, as follows:
- Positive travel value \(\qquad\) forward direction (increased address)
- Negative travel value. \(\qquad\) reverse direction (decreased address)

Fig.7.25 Fixed-Pitch Feed Control Using 3-Axes Linear Interpolation

\section*{7. POSITIONING CONTROL}

\section*{POINT}
(1) Do not set the travel value to zero for fixed-pitch feed control.

The following results if the travel value is set to zero:
(a) If all three axes are set to zero, the fixed-pitch feed ends with no feed taking place.
(b) If the travel value is set to zero for any of the 3-axes, fixed-pitch feed control will not occur at the normal positioning speed for the axis or axes set to a non-zero travel value.

\section*{[Program Example]}

This program conducts fixed-pitch feed control using 3-axes linear interpolation under the conditions below.
(1) System configuration

Fixed-pitch feed control using 3-axes linear interpolation of Axis, 1, Axis 2, and Axis 3.

(2) System configuration
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{3}{c|}{ Setting } \\
\hline Servo program number & \multicolumn{3}{c|}{ No. 320 } \\
\hline Positioning speed & \multicolumn{3}{c|}{1000} \\
\hline Controlled axes & Axis 1 & Axis 2 & Axis 3 \\
\hline Travel value & 50000 & 40000 & 30000 \\
\hline
\end{tabular}
(b) Fixed-pitch feed control start command
leading edge of X000
(OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing

The operation timing for fixed-pitch feed control using 3-axes linear interpolation is shown below.

(4) Servo program

The servo program No. 320 for fixed-pitch feed control using 3-axes linear interpolation is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.12 Speed Control (I)}
(1) Speed control of the axis designated in the sequence program positioning commands.
(2) Control includes positioning loops for control of servo amplifiers.
(3) Speed control (I) uses the VF (forward) and VR (reverse) servo instructions.

[Control Details]
(1) Controls the axis at the designated speed between the start of servo motor operation and the input of the stop command.
- VF \(\qquad\) movement in forward direction
- VR . movement in reverse direction
(2) The present value does not change at zero.

Fig.7.26 Speed Control (I)

\section*{7. POSITIONING CONTROL}
(3) Stop commands and stop processing

The stop commands and stop processing for speed control are listed in Figure 7.1.

Fig. 7.1 Stop Commands and Stop Processing
\begin{tabular}{|c|c|c|c|}
\hline Stop Command & Stop Condition & Stopped Axis & Stop Processing \\
\hline External STOP signal & \multirow{3}{*}{\(\mathrm{OFF} \rightarrow \mathrm{ON}\)} & \multirow{3}{*}{Designated axis} & Deceleration stop according to the deceleration time on STOP input designated in the parameter block or by a servo instruction. \\
\hline Stop command (M3200+20n) & & & Deceleration stop according to the deceleration time designated in the parameter block or by a servo instruction. \\
\hline \begin{tabular}{l}
Rapid stop command \\
(Note-1) \\
(M3201+20n)
\end{tabular} & & & Deceleration stop according to the rapid stop deceleration time designated in the parameter block or by a servo instruction. \\
\hline Emergency stop from peripheral device (Note-1) (test mode) & Key input & All axes & Deceleration stop according to the rapid stop deceleration time designated in the parameter block or by a servo instruction. \\
\hline Speed changed to 0 & Value stored in speed change register & Designated axis & Deceleration stop according to the deceleration time designated in the parameter block or by a servo instruction. \\
\hline
\end{tabular}

\section*{POINT}
(Note-1): The rapid stop command and emergency stop from a peripheral device are valid during deceleration due to input of an external STOP signal or the stop command (M3200+20n), and processing according to the rapid stop deceleration time parameter starts at the time the stop condition occurs.

speed limit value

STOP signal or stop command from external source

Rapid stop command or emergency stop signal from peripheral device

\section*{[Cautions]}
(1) After running speed control using the absolute data system, the feed current value cannot be set to zero by the following operations:
- Reset with the RUN key
- Turning on the servo power supply (OFF \(\rightarrow\) ON)
(2) The dwell time cannot be set.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts speed control (I) under the conditions below.
(1) System configuration

Speed control (I) of Axis 1.

(2) Speed control (I) conditions
(a) The speed control (I) conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & No. 91 \\
\hline Controlled axis & Axis 1 \\
\hline Control speed & 3000 \\
\hline Rotation direction & Forward \\
\hline
\end{tabular}
(b) Speed control (I) start command........ leading edge of X000 (OFF \(\rightarrow\) ON)
(c) Speed control (I) stop command trailing edge of X000 (ON \(\rightarrow\) OFF)
(3) Operation timing

The operation timing for speed control \((\mathrm{I})\) is shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 91 for speed control \((I)\) is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.13 Speed Control (II)}
(1) Speed control of the axis designated in the sequence program positioning commands.
(2) Control does not include positioning loops for control of servo amplifiers. Use stopper control to current errors becoming excessive.
(3) Speed control (II) uses the VVF (forward) and VVR (reverse) servo instructions.

\section*{[Control Details]}
(1) Controls the axis at the designated speed between the start of servomotor operation and the input of the stop command.
- VVF \(\qquad\) movement in forward direction
- VVR \(\qquad\) movement in reverse direction
(2) The current value or deviation counter do not change at zero.
(3) When the setting for "torque" is set in a servo program and an indirect designation is made, the torque limit value can be changed during operation by changing the value of the indirect device.
(4) The stop command and stop processing are the same as for speed control(I).
[Cautions]
(1) After running speed control using the absolute data system, the feed current value cannot be set to zero by resetting with the RUN key.
(2) The dwell time cannot be set.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program conducts speed control (II) under the conditions below.
(1) System configuration

Speed control (II) of Axis 3.

(2) Speed control (II) conditions
(a) The speed control (II) conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & No. 55 \\
\hline Controlled axis & Axis 3 \\
\hline Control speed & 4000 \\
\hline Rotation direction & Forward \\
\hline
\end{tabular}
(b) Speed control (II) start command leading edge of X000 (OFF \(\rightarrow\) ON)
(c) Speed control (II) stop commandtrailing edge of X000
(ON \(\rightarrow\) OFF)
(3) Operation timing

The operation timing for speed control (II) is shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 55 for speed control (II) is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.14 Speed/Position Switching Control}

\subsection*{7.14.1 Starting speed/position switching control}

Speed/position switching control of the axis designated in the sequence program positioning commands.
Speed/position switching control uses the VPF (forward), VPR (reverse), and VPSTART (restart) servo instructions.

\section*{[Control Details]}
(1) The servomotor starts under speed control, but on input of the external CHANGE signal the control changes from speed control to position control and the axis is positioned by the designated travel value.
- VPF......... movement in forward direction (direction in which addresses increase)
- VPR movement in reverse direction (direction in which addresses decrease)
(2) The external CHANGE signal is only valid when M3205+20n (Speed/position switching enable signal) is ON. If M3205+20n turns ON after the CHANGE signal turns \(O N\), no speed/position switching occurs and speed control is continued.

\section*{REMARKS}
(Note-1) : The external CHANGE signal is an external input to the A278LX/A172SENC CHENGE terminal. When "normally open contact input" is set in the system settings, CHANGE input occurs when the CHANGE signal comes ON, and when "normally closed contact input" is set, CHANGE input occurs when the CHANGE signal goes OFF. (See the A173UHCPU/A273UHCPU Motion Controller User's Manual for details.)
(3) Feed current value processing

The feed current value is determined in one of the following two ways according to the ON/OFF status of M3212+20n (feed current value update request command) when speed/position switching control is started.
(a) M3212+20n

OFF
- The feed current value is cleared to zero at the start of speed/position switching control.
- TheZ feed current value is updated from the start of control (speed control).
- The feed current value after control is stopped is as follows:
\(\left[\begin{array}{c}\text { Feed current } \\ \text { value after } \\ \text { stopping }\end{array}\right]=\left[\begin{array}{c}\text { Travel value } \\ \text { under speed } \\ \text { control }\end{array}\right]+\left[\begin{array}{c}\text { i raveı value } \\ \text { under } \\ \text { position } \\ \text { nnntrnl }\end{array}\right]\)
(b) M3212+20n ON
- The feed current value is not cleared at start of speed/position switching control.
- The feed current value is updated from the start of control (speed control).
- The axis makes a deceleration stop if the feed current value exceeds the stroke limit.
- The feed current value after control is stopped is as follows:
\(\left.\left[\begin{array}{c}\text { Feed current } \\ \text { value after } \\ \text { stopping }\end{array}\right]=\left[\begin{array}{c}\text { Address } \\ \text { before speed } \\ \text { control }\end{array}\right]+\left[\begin{array}{c}\text { Travel value } \\ \text { under speed } \\ \text { control }\end{array}\right]+\left[\begin{array}{c}\text { Travel value } \\ \text { under position } \\ \text { control }\end{array}\right]\right]\)

\section*{POINT}

If control is started by turning M3212+20n ON, leave M3212+20n ON until positioning control is completed.
The feed current value cannot be guaranteed if M3212+20n is turned OFF during control.
(4) Changing travel value during speed control

After speed/position switching control is started, the travel value for position control can be changed while speed control is in progress. Follow the procedure described below to change the travel value.
(a) Indirectly designate the travel value in the servo program using the 2-word data registers shown in the table below.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Axis No.} & \multirow[t]{2}{*}{Data Register Number for Indirect Designation} & \multicolumn{2}{|l|}{Data Registers to Change Travel Value} \\
\hline & & Most-Significant Data & Least-Significant Data \\
\hline 1 & D16 & D17 & D16 \\
\hline 2 & D36 & D37 & D36 \\
\hline 3 & D56 & D57 & D56 \\
\hline 4 & D76 & D77 & D76 \\
\hline 5 & D96 & D97 & D96 \\
\hline 6 & D116 & D117 & D116 \\
\hline 7 & D136 & D137 & D136 \\
\hline 8 & D156 & D157 & D156 \\
\hline 9 & D176 & D177 & D176 \\
\hline 10 & D196 & D197 & D196 \\
\hline 11 & D216 & D217 & D216 \\
\hline 12 & D236 & D237 & D236 \\
\hline 13 & D256 & D257 & D256 \\
\hline 14 & D276 & D277 & D276 \\
\hline 15 & D296 & D297 & D296 \\
\hline 16 & D316 & D317 & D316 \\
\hline 17 & D336 & D337 & D336 \\
\hline 18 & D356 & D357 & D356 \\
\hline 19 & D376 & D377 & D376 \\
\hline 20 & D396 & D397 & D396 \\
\hline 21 & D416 & D417 & D416 \\
\hline 22 & D436 & D437 & D436 \\
\hline 23 & D456 & D457 & D456 \\
\hline 24 & D476 & D477 & D476 \\
\hline 25 & D496 & D497 & D496 \\
\hline 26 & D516 & D517 & D516 \\
\hline 27 & D536 & D537 & D536 \\
\hline 28 & D556 & D557 & D556 \\
\hline 29 & D576 & D577 & D576 \\
\hline 30 & D596 & D597 & D596 \\
\hline 31 & D616 & D617 & D616 \\
\hline 32 & D636 & D637 & D636 \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}

\section*{7. POSITIONING CONTROL}
(b) The sequence program sets the travel value in the travel value change data register while speed control is in progress. When the external CHANGE signal turns ON, the contents of the travel value change data register are set as the travel value.

(5) Travel value area after proximity point dog turns ON

The travel value since the position mode was selected by the external CHANGE signal is stored in the travel value area (see section 3.2.1) when the proximity dog turns ON.

\section*{[Cautions]}
(1) Items checked when the external CHANGE signal turns ON

Speed control switches to position control when the external CHANGE signal turns ON if the following conditions are met:
- The start accept flag (M2001+n) is ON.
- Speed control is in progress after start of speed/position switching control.
- Speed/position switching enable signal (M3205+20n) is ON.
(2) To omit speed control

Position control only is executed if M3205+20n and the CHANGE signal are ON when control starts. The speed control signal (M2404+20n) does not turn ON.

\section*{7. POSITIONING CONTROL}
(3) If travel value under position control is less than deceleration distance
(a) If the position control travel value is less than the deceleration distance at the controlled speed, deceleration processing starts immediately when CHANGE is input.
(b) The difference between travel value for the deceleration stop and position control is the overrun. If an overrun occurs, the error detection signal (M2407+20n) turns ON and error code 209 is stored in the data register.
(c) The positioning completed signal (M2401+20n) does not turn ON.

(4) Stroke limit check

No stroke limit range check is made during the speed mode. If the travel value exceeds the stroke limit range, a minor error (error code: 210) occurs when position mode is selected, and a deceleration stop occurs.
(5) Switching time from speed control to position control

Switching from speed control to position control takes 1 ms after the external CHANGE signal turns ON.

\section*{[Program Example]}

This program executes speed/position switching control under the conditions below.
(1) System configuration

Speed/position switching control of Axis 4.

\section*{7. POSITIONING CONTROL}
(2) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & No. 101 \\
\hline Controlled axis & Axis 4 \\
\hline \begin{tabular}{l}
Positioning control \\
travel value
\end{tabular} & 40000 \\
\hline Commanded speed & 1000 \\
\hline
\end{tabular}
(b) Positioning start command. \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)
(c) Speed/position switching enable flag \(\qquad\) M3265
(3) Operation timing The operation timing for speed/position switching control is shown below.

(4) Servo program

The servo program No. 101 for speed/position switching control is shown below.

\section*{7. POSITIONING CONTROL}
(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.14.2 Restarting speed/position switching control}

Restarting (continuing) speed/position switching control after a stop due to a stop command. Control is restarted using the VPSTART servo instruction.

\section*{[Control Details]}
(1) Speed/position switching control is continued after it was stopped due to a stop command.
(2) Restarting using VPSTART is valid whether the stop occurred during speed control or position control.
(a) If the stop occurred during speed control, then speed control continues and switches to position control when the CHANGE signal turns ON.
The control conditions after restarting are the same as the previous speed/position switching control conditions.
See 7.14.1 "Starting Speed/Position Switching Control".

Fig.7.27 Restarting During Speed Control

\section*{7. POSITIONING CONTROL}
(b) If the stop occurred during position control, then position control continues until the positioning reaches the set travel value.
The travel value after the restart is calculated as follows:
\(\left[\begin{array}{c}\text { Travel value } \\ \text { after restart } \\ (P 2)\end{array}\right]=\left[\begin{array}{c}\text { Set travel } \\ \text { value (P) }\end{array}\right]+\left[\begin{array}{c}\text { Travel value } \\ \text { be- } \\ \text { fore stop }(P 1)\end{array}\right]\)

Fig.7.28 Restarting During Speed Control
(3) The speed at restart is the speed stored when the VPF/VPR instruction occurred.
Therefore, even if a speed change occurred before the stop, control restarts at the speed set at the time of VPF/VPR instruction execution.

Fig.7.29 Restarting After Speed Change

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program restarts speed/position switching control after a stop, under the conditions below.
(1) System configuration

Speed/position switching control of Axis 4.

(2) Positioning conditions
(a) The positioning conditions are shown below.
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Item }} & \multicolumn{2}{c|}{ Setting } \\
\cline { 2 - 3 } & \begin{tabular}{c}
Speed/Position \\
Switching Control
\end{tabular} & Restart \\
\hline Servo program number & No. 101 & No. 102 \\
\hline Controlled axis & Axis 4 & Axis 4 \\
\hline \begin{tabular}{l}
Positioning control \\
travel value
\end{tabular} & 40000 & - \\
\hline Commanded speed & 1000 & - \\
\hline
\end{tabular}
(b) Positioning start command.
leading edge of X000
(OFF \(\rightarrow\) ON)
(c) Speed/position switching enable flag

M3265
(d) Restart command
leading edge of X001
(OFF \(\rightarrow\) ON)
(e) Stop command
leading edge of X002
(OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing

The operation timing for speed/position switching control and restarting is shown below.

(4) Servo program

The servo program No. 101 for speed/position switching control and No. 102 for restarting are shown below.

\section*{7. POSITIONING CONTROL}
(5) Sequence program

The sequence program which runs the servo programs is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.15 Speed-Switching Control}
(1) After a single control start, the speed is switched for positioning control to the preset speed-switching points.
(2) The speed-switching points and speed are set by the servo program.
(3) Repeated instructions permit repeated control between any speed-switching points.
(4) M-codes and torque limit values can be changed at each speed-switching point.
7.15.1 Starting speed-switching control, speed-switching points, end designation

\section*{7. POSITIONING CONTROL}

\section*{[Control Details]}

\section*{Starting and ending speed-switching control}

Speed-switching control is started and ended using the following instructions:
(1) VSTART

Starts speed-switching control.
(2) VEND

Ends speed-switching control.

\section*{End address and travel value to end point}

The speed-switching control end address and travel value to the end point, positioning method, and positioning speed to the end point are set using the following instructions:
(1) ABS-1/INC-1

Designate 1-axis linear positioning control.
The control details are described in Section 7.2 "1-axis Linear Positioning Control".
(2) ABS-2/INC-2

Designate 2-axes linear interpolation control.
The control details are described in Section 7.3 "2-axes Linear Interpolation Control".
(3) ABS-3/INC-3

Designate 3-axes linear interpolation control.
The control details are described in Section 7.4 "3-axes Linear Interpolation Control".

\section*{Speed-switching point setting}

The address (travel value) to the speed-switching point and the positioning speed are set using the following instructions:
(1) VABS

Designates the speed-switching point using the absolute data method.
(2) VINC

Designates the speed-switching point using the incremental method.

\section*{POINT}

The settings for speed-switching point (travel value) and the positioning speed under 2 or 3-axes linear interpolation control apply to the axis designated for speed-switching control end address and travel value to the end point (with the ABS/INC instructions).

\section*{7. POSITIONING CONTROL}

\section*{Operation timing and the procedure to write servo programs}

The method to write servo programs for speed-switching control and the operation timing are shown in below.
[Servo program]

[Operation timing]

\section*{7. POSITIONING CONTROL}

\section*{[Cautions]}
(1) The number of control axis cannot be changed while control is in progress.
(2) Designation of position switching points can use a combination of the absolute data method (ABS \(\square\)) and the incremental method (INCD).
(3) A speed-switching point cannot be designated as an address which results in a change in travel direction. If the address results in a change in direction, the error code 215 is stored in the minor error register for the axis and a deceleration stop occurs.
(4) A maximum of 768 steps (approximately 100 points) can be designated in a speed-switching control program.
(5) When control is started a check is made to ensure that the end address lies in the stroke range.
If the check determines that positioning would result in an axis moving out of the stroke limit range, the error code 106 is stored in the minor error register for the axis and operation does not start.
(6) Speed switching is not carried out if the travel value between speed-switching points is so short that the next speed-switching point is reached while speed switching is still in progress.
(7) If no M-code is designated for a speed-switching point, the M-code from the previous point is retained.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes speed-switching control under the conditions below.
(1) System configuration

Speed-switching control of Axis 2 and Axis 3.

(2) Positioning conditions
(a) The speed-switching control conditions are shown below.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{2}{c|}{ Setting } \\
\hline Servo program number & \multicolumn{2}{c|}{ No. 500 } \\
\hline Controlled axis & Axis 2 & Axis 3 \\
\hline End address & 100000 & 50000 \\
\hline
\end{tabular}
(b) Speed-switching control start command...
leading edge of X000
(OFF \(\rightarrow\) ON)
(3) Operation timing and speed-switching positions

The operation timing for speed-switching control and the speed-switching points are shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 500 for speed-switching control is shown below.

(5) Sequence program The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.15.2 Setting speed-switching points using repeat instructions}

Repeated execution between any speed-switching points.
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Servo Instruction} & \multirow[b]{3}{*}{Positioning Method} & \multirow[b]{3}{*}{Number of Controllable Axes} & \multicolumn{22}{|c|}{Items Set by Peripherals} & \\
\hline & & & \multicolumn{7}{|c|}{Common} & \multicolumn{3}{|c|}{Arc} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{3}{|c|}{Others} & \\
\hline & & & & \[
\frac{n}{x}
\] & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \text { U } \\
& 1
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { n } \\
& \stackrel{\bar{\sigma}}{\widetilde{\pi}} \\
&
\end{aligned}
\] & & K
0
0
0
0
0
0 & & & Deceleration Time & & & & Allowable Error Range for Circular Interpolation & & & む
O゙
© & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\#} \\
& \stackrel{\pi}{\omega}
\end{aligned}
\] & \\
\hline FOR-TIMES & \multirow{3}{*}{-} & \multirow{3}{*}{-} & \\
\hline FOR-ON & O & \(\Delta\) & \(\Delta\) & \\
\hline FOR-OFF & \\
\hline NEXT & - & - & \\
\hline
\end{tabular}

\section*{[Control Details]}

\section*{Setting the Start of the Repeated Range}

The start of the repeated range is designated using the following instructions:
(1) FOR-TIMES (number of loops setting)
(a) The designated repeated range is executed the set number of times.
(b) The setting range is (1 to 32767).

An out-of-range setting between -32768 and 0 is controlled as a setting of 1.
(c) The following devices are available to set the number of repeats:
1) Data register (D) \(\qquad\) Indirect designation
2) Link register (W)
3) Decimal constant (K)
4) Hexadecimal constant (H)
(2) FOR-ON (loop-out trigger condition setting)
(a) The set repeated range is executed while the designated bit device is ON.
(b) The following devices are available to set the loop-out trigger condition:
1) Input (\(X\))
2) Output (Y)
3) Internal relay (M)/Special relay (SP.M)
4) Latch relay (L)
5) Link relay (B)
6) Annunciator (F)
(3) FOR-OFF (loop-out trigger condition setting)
(a) The set repeated range is executed while the designated bit device is OFF.
(b) The following devices are available to set the loop-out trigger condition:
1) Input (\(X\))
2) Output (Y)
3) Internal relay (M)/Special relay (SP.M)
4) Latch relay (L)
5) Link relay (B)
6) Annunciator (F)

Repeated operation using FOR-TIMES, FOR-ON, and FOR-OFF is shown below.
[Servo Program]

\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ 1) } & \multicolumn{3}{|c|}{ 2) } \\
\cline { 2 - 4 } & Condition 1 & Condition 2 & Condition 3 \\
\hline FOR-TIMES & \multicolumn{1}{|c|}{K 1} & \multicolumn{1}{|c|}{ K2 } & K3 \\
\hline FOR-ON & \begin{tabular}{l}
\(\mathrm{X010} \rightarrow\) ON \\
from start
\end{tabular} & \begin{tabular}{l}
\(\mathrm{X010} \rightarrow \mathrm{ON}\) \\
during first \\
execution of 3)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{X010} \rightarrow\) ON \\
during third \\
execution of 3)
\end{tabular} \\
\hline FOR-OFF & \begin{tabular}{l}
X010 \(\rightarrow\) OFF \\
from start
\end{tabular} & \begin{tabular}{l}
X011 \(\rightarrow\) OFF \\
during first \\
execution of 3)
\end{tabular} & \begin{tabular}{l}
X011 \(\rightarrow\) OFF \\
during third \\
execution of 3)
\end{tabular} \\
\hline
\end{tabular}
3)
(1) Operation under condition 1

(2) Operation under condition 2

\section*{7. POSITIONING CONTROL}
(3) Operation under condition 3

Error generated because the distance to the stop position exceeds the travel value.

\section*{[Program example]}

This program executes repeated speed-switching control under the conditions below.
(1) System configuration

Speed-switching control of Axis 2 and Axis 3.

(2) Positioning conditions
(a) The speed-switching control conditions are shown below.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{2}{c|}{ Setting } \\
\hline Servo program number & \multicolumn{2}{c|}{ No. 501 } \\
\hline Controlled axes & Axis 2 & Axis 3 \\
\hline End address & 230000 & 100000 \\
\hline
\end{tabular}
(b) Speed-switching control start command
leading edge of X000
(OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing and speed-switching positions

The operation timing for speed-switching control and the speed-switching points are shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 501 for speed-switching control is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16 Constant-Speed Control}
(1) After a single control start, positioning control is executed using the designated positioning method and positioning speed to the preset pass point.
(2) The positioning method and positioning speed can be changed for each pass point.
(3) Set the following parameters with the servo program.
- pass point
- positioning method from one pass point to the next pass point.
- positioning speed from one pass point to the next pass point.
(4) Repeat instructions permit repeated control between any pass points.
(5) M-code and torque limit value can be changed at each pass point.
(6) From 1 to 4-axes can be controlled.

\section*{[Procedure to Write Servo Programs]}

The method to write servo programs for constant-speed control is shown below.

\section*{7. POSITIONING CONTROL}
[Operation Timing]
The operation timing for constant-speed control is shown below.

\section*{7. POSITIONING CONTROL}

\section*{[Caution]}
(1) The number of controllable axis cannot be changed while control is in progress.
(2) Positioning control to the pass points can use a combination of the absolute data method (ABS \(\square\)) and the incremental method (INCD).
(3) A pass point can be designated as an address which results in a change in travel direction.
However, a servo error or some other error may occur if acceleration processing occurs at a pass point for 1-axis constant-speed control but no acceleration or deceleration processing occurs at the pass point for 2 to 4-axes constant-speed control.
(4) Speed change is possible after start

Note the following points when changing the speed.
(a) If constant-speed control includes circular interpolation using center point designation
Error compensation (see Section 4.4.3) may not function normally if the speed is changed when a discrepancy (within the allowable error range for circular interpolation) exists between the designated end-point address and the arc path calculated from the start address and center-point address. Therefore, if the circular interpolation using center point designation positioning method is used under constant-speed control, ensure that the set start address, center-point address, and end address lie correctly on the arc.
(b) If both a servo program and the CHGV instructions are used for the speed change in the same program
The lower of the speed changed by the CHGV instructions and the speed set by the servo program is selected.
The CHGV instructions are executed if the changed speed is lower than the speed set in the servo program; otherwise the CHGV instructions are not executed.
1) If CHGV changed speed \(>\) servo program set speed

The speed set in the servo program is selected.

2) If CHGV changed speed < servo program set speed The speed changed by the CHGV instructions is valid.

(5) An overrun occurs if the distance remaining to the final positioning point when the final positioning point is detected is less than the deceleration distance at the positioning speed (commanded speed).
If an overrun occurs, the error code 211 (overrun error) is stored in the minor error register for the axis.
(6) A maximum of 768 steps (approximately 100 points) can be designated in a constant-speed control program.
(7) If positioning moves outside the stroke limit range after control is started, the error code 106 is stored in the minor error register for the axis and a deceleration stop occurs.
(8) The minimum travel value between constant-speed control pass points is determined as follows:

\section*{Commanded speed \(\times 0.02\) < Travel distance (PLS)}

Positioning speed drops if the distance between pass points is extremely short.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.1 Setting Pass points using Repeated Instructions}

This section describes the method of designating the pass points used for repeated execution between pass points.

\section*{[Control Details]}

\section*{Setting the start of the repeated range}

The start of the repeated range is designated using the following instructions:
(1) FOR-TIMES (number of loops setting)
(a) The designated repeated range is executed the set number of times.
(b) The setting range is (1 to 32767).

If an out-of-range setting between -32768 and 0 is designated, control is executed with a setting of "1".
(c) The following devices are available to set the number of repetitions:
1) Data register (D) \(\qquad\) Indirect designation
2) Link register (W)
4) Hexadecimal constant (H)
(2) FOR-ON (loop-out trigger condition setting)
(a) The set repeated range is executed while the designated bit device is ON.
(b) The following devices are available to set the loop-out trigger condition:
1) Input (\(X\))
2) Output (Y)
3) Internal relay (M)/Special relay (SP.M)
4) Latch relay (L)
5) Link relay (B)
6) Annunciator (F)
(3) FOR-OFF (loop-out trigger condition setting)
(a) The set repeated range is executed while the designated bit device is OFF.
(b) The following devices are available to set the loop-out trigger condition:
1) Input (\(X\))
2) Output (Y)
3) Internal relay (M)/Special relay (SP.M)
4) Latch relay (L)
5) Link relay (B)
6) Annunciator (F)

Repeated operation using FOR-TIMES, FOR-ON, and FOR-OFF is shown below.
[Servo Program]

\begin{tabular}{|c|c|l|l|}
\hline \multirow{2}{*}{ 1) } & \multicolumn{3}{|c|}{ 2) } \\
\cline { 2 - 4 } & Condition 1 & Condition 2 & Condition 3 \\
\hline FOR-TIMES & K1 & \multicolumn{1}{|c|}{ K2 } & \multicolumn{1}{|c|}{ K3 } \\
\hline FOR-ON & \begin{tabular}{l}
X010 \(\rightarrow\) ON \\
from start
\end{tabular} & \begin{tabular}{l}
X010 \(\rightarrow\) ON \\
during first \\
execution of 3)
\end{tabular} & \begin{tabular}{l}
X010 \(\rightarrow\) ON \\
during third \\
execution of 3)
\end{tabular} \\
\hline FOR-OFF & \begin{tabular}{l}
X010 \(\rightarrow\) OFF \\
from start
\end{tabular} & \begin{tabular}{l}
X011 \(\rightarrow\) OFF \\
during first \\
execution of 3)
\end{tabular} & \begin{tabular}{l}
X011 \(\rightarrow\) OFF \\
during third \\
execution of 3)
\end{tabular} \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes repeated constant-speed control under the conditions below.
(1) System configuration

Constant-speed control of Axis 2 and Axis 3.

(2) Positioning conditions
(a) The constant-speed control conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & No. 510 \\
\hline Controlled axes & Axis 2, Axis 3 \\
\hline Positioning speed & 10000 \\
\hline
\end{tabular}
(b) Constant-speed control start command
leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing

The operation timing for constant-speed control is shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 510 for constant-speed control is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.2 Speed switching during instruction execution}

The speed can be designated for each pass point during a constant-speed control instruction.
The speed change from a point can be designated directly or indirectly in the servo program.

\section*{[Cautions]}
(1) The speed can be changed during servo instruction execution for 1 to 4 -axes constant-speed control.
(2) The speed command can be set for each point.
(3) The speed-switching point designation flag M2040 (see Section 3.1.3) can be turned ON before control is started to set the designated speed-switching point as the end point for the speed change.
The speed change timing is shown below for the cases where the speedswitching point designation flag M2016 is ON and OFF.
(a) M2040 is OFF

The speed change starts at the designated speed-switching point.

(b) M2040 is ON

The speed change ends at the designated speed-switching point.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program turns ON M2040 during constant-speed control instruction execution and changes the speed, under the conditions below.
(1) System configuration

Switches speed for Axis 1 and Axis 2.

(2) Positioning conditions
(a) The speed switching conditions are shown below.
\begin{tabular}{|l|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{4}{|c|}{ Setting } \\
\hline \begin{tabular}{l}
Servo program \\
number
\end{tabular} & \multicolumn{4}{|c|}{310} \\
\hline Positioning speed & \multicolumn{4}{|c|}{10000} \\
\hline \multirow{2}{*}{ Positioning method } & \begin{tabular}{c}
2-axes linear \\
interpolation
\end{tabular} & \begin{tabular}{c}
Circular interpolation \\
using center point \\
designation
\end{tabular} & \begin{tabular}{c}
2-axes linear \\
interpolation
\end{tabular} & \begin{tabular}{c}
2-axes linear \\
interpolation
\end{tabular} \\
\hline \multirow{2}{*}{ Pass point } & Axis 1 & 20000 & 30000 & 40000 & 50000 \\
\cline { 2 - 6 } & Axis 2 & 10000 & 20000 & 25000 & 40000 \\
\hline
\end{tabular}
(b) Constant-speed control with speed switching start command leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(3) Operation timing and speed-switching positions The operation timing and positions for speed switching are shown below.

\section*{7. POSITIONING CONTROL}
(4) Servo program

The servo program No. 310 for speed switching is shown below.

(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.3 One-axis constant-speed control}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Servo Instruction}} & \multirow[b]{3}{*}{Positioning Method} & \multirow[b]{3}{*}{Number of Controllable Axes} & \multicolumn{24}{|c|}{Items Set by Peripherals} & \\
\hline & & & & \multicolumn{7}{|c|}{Common} & \multicolumn{3}{|c|}{Arc} & \multicolumn{9}{|c|}{Parameter Block} & \multicolumn{5}{|c|}{Others} & \multirow[b]{2}{*}{} \\
\hline & & & & & \[
\stackrel{n}{\underset{x}{x}}
\] & & & \[
\begin{array}{|l|}
\hline \\
\\
\\
0 \\
\vdots \\
\overline{\overline{0}} \\
\overline{0} \\
\hline 0
\end{array}
\] & M-Code & & lu!od Kue!!!xn & sn!pey & Center Point & ท!un ןoxpuoう & & & & әш!! ио!̣еләәәэәа dols p!dey & \multicolumn{2}{|l|}{} & & o!̣ey әлinつ-S & & \multicolumn{3}{|l|}{} & & \\
\hline Start & CPSTART1 & - & 1 & \(\Delta\) & 0 & & 0 & & & & & & & & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & & \(\Delta\) & & \(\Delta\) & \(\Delta\) & & \(\Delta\) & \\
\hline End & CPEND & - & - & & & & & \(\Delta\) & \\
\hline & ABS-1 & Absolute data & 1 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline & INC-1 & Incremental & 1 & & \(\bigcirc\) & \(\bigcirc\) & & & \(\Delta\) & \(\Delta\) & & & & & & & & & & & & & \(\Delta\) & & & \(\Delta\) & & \\
\hline
\end{tabular}

O : Must be set
\(\Delta\) : Set if required

\section*{[Control Details]}

\section*{Starting and ending one-axis constant-speed control}

1-axis constant-speed control is started and ended using the following instructions:
(1) CPSTART1

Starts 1-axis constant-speed control. Sets the axis number used and the commanded speed.
(2) CPEND

Ends the 1-axis constant-speed control which was started using CPSTART1.

\section*{Positioning control method to the pass point}

The positioning control to the point where control is changed is designated using the following instructions:
(1) ABS-1/INC-1

Designates 1-axis linear positioning control.
See Section 7.2 "1-axis Linear Positioning Control" for details.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes repeated 1-axis constant-speed control under the conditions below.
(1) System configuration

Constant-speed control for Axis 4.

(2) Positioning conditions
(a) The constant-speed control conditions are shown below.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & 500 \\
\hline Controlled axis & Axis 4 \\
\hline \multicolumn{3}{|l|}{ Positioning speed } \\
\hline Number of repetitions & 10000 \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Pass point \\
travel value
\end{tabular}} & P1 & -1000 \\
\cline { 2 - 3 } & P2 & 2000 \\
\cline { 2 - 3 } & P3 & -2000 \\
\cline { 2 - 3 } & P4 & 1000 \\
\hline
\end{tabular}
(b) Constant-speed control start command \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)
(3) Details of positioning operation

\section*{7. POSITIONING CONTROL}
(4) Operation timing

The operation timing for servo program No. 500 is shown below.

(5) Servo program

The servo program No. 500 for constant-speed control is shown below.

\section*{7. POSITIONING CONTROL}
(6) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.4 2 to 4-axes constant-speed control}

Constant-speed control for the 2 to 4 -axes designated with the sequence program positioning commands.

\section*{7. POSITIONING CONTROL}

\section*{[Control Details]}

\section*{Starting and Ending 2- to 4-axes Constant-Speed Control}

2-, 3-, or 4-axes constant-speed control is started and ended using one of the following instructions:
(1) CPSTART2

Starts 2-axes constant-speed control.
Sets the axis numbers used and the commanded speed.
(2) CPSTART3

Starts 3-axes constant-speed control.
Sets the axis numbers used and the commanded speed.
(3) CPSTART4

Starts 4-axes constant-speed control.
Sets the axis numbers used and the commanded speed.
(4) CPEND

Ends the 2, 3, or 4-axes constant-speed control which was started using CPSTART2, CPSTART3, or CPSTART4.

\section*{Positioning Control Method to the Pass Point}

The positioning control to the point where control is changed is designated using the following instructions:
(1) ABS-2/INC-2

Designates 2-axes linear interpolation control.
See Section 7.3 "2-axes Linear Interpolation Control" for details.
(2) ABS-3/INC-3

Designates 3-axes linear interpolation control.
See Section 7.4 "3-axes Linear Interpolation Control" for details.
(3) ABS-4/INC-4

Designates 4-axes linear interpolation control.
See Section 7.5 "4-axes Linear Interpolation Control" for details.
(4) ABS/INC \({ }^{\dagger}\)

Designates circular interpolation control using auxiliary point designation.
See Section 7.6 "Circular Interpolation Using Auxiliary Point Designation" for details.
(5) \(\mathrm{ABS} / \mathrm{INC} \curvearrowright, \mathrm{ABS} / \mathrm{INC} \subset, A B S / I N C<\), ABS/INC \(\smile\)

Designates circular interpolation control using radius designation.
See Section 7.7 "Circular Interpolation Using Radius Designation" for details.
(6) \(\mathrm{ABS} / \mathrm{INC} \odot, A B S / I N C *\)

Designates circular interpolation control using center point designation.
See Section 7.8 "Circular Interpolation Using Center Point Designation" for details.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}
(1) This program executes 2 -axes constant-speed control under the conditions below.
(a) System

Constant-speed control for Axis 2 and Axis 3.

(b) Positioning conditions
1) The constant-speed control conditions are shown below.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{3}{|c|}{ Setting } \\
\hline \begin{tabular}{l}
Servo program \\
number
\end{tabular} & \multicolumn{3}{|c|}{505} \\
\hline Positioning speed & \multicolumn{3}{|c|}{10000} \\
\hline \multirow{2}{*}{ Positioning method } & \begin{tabular}{c}
2-axes linear \\
interpolation
\end{tabular} & \begin{tabular}{c}
Circular Interpolation \\
Using Radius Designation
\end{tabular} & \begin{tabular}{c}
2-axes linear \\
interpolation
\end{tabular} \\
\hline \multirow{2}{*}{ Pass point } & Axis 2 & 30000 & 50000 & 90000 \\
\cline { 2 - 5 } & Axis 3 & 30000 & 50000 & 100000 \\
\hline
\end{tabular}
2) Constant-speed control start command \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(c) Servo program

Servo program No. 505 for constant-speed control is shown below.

(d) Sequence
program
The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}
(2) This program executes 4-axes constant-speed control under the conditions below.
(a) System configuration

Constant-speed control for Axis 1, Axis 2, Axis 3, and Axis 4.

(b) Positioning details

Positioning is performed by the Axis 1, Axis 2, Axis 3 and Axis 4 servomotors.
The positioning by the Axis 1, Axis 2, Axis 3, and Axis 4 servomotors is shown in the diagram below.

Fig.7.30 Axis Configuration

\section*{7. POSITIONING CONTROL}

Fig.7.31 Positioning by 4-Axes Constant-Speed Control
(c) Positioning conditions
1) The constant-speed control conditions are shown below.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Item } & \multicolumn{3}{|c|}{ Setting } \\
\hline \multicolumn{2}{|c|}{ Servo program number } & \multicolumn{3}{|c|}{506} \\
\hline \multicolumn{3}{|c|}{ Positioning speed } & \multicolumn{3}{|c|}{10000} & \begin{tabular}{l}
4-axes linear \\
interpolation
\end{tabular} \\
\hline \multirow{3}{*}{ Positioning method } & \begin{tabular}{l}
4-axes linear \\
interpolation
\end{tabular} & 4-axes linear interpolation & 5000 \\
\hline \multirow{4}{*}{ Pass point } & Axis 1 & 3000 & 5000 & 3500 \\
\cline { 2 - 5 } & Axis 2 & 4000 & 3500 & 3000 \\
\cline { 2 - 5 } & Axis 3 & 4000 & -4000 & 6000 \\
\cline { 2 - 5 } & Axis 4 & 4000 & -6000 & \\
\hline
\end{tabular}
2) Constant-speed control start command........ leading edge of X000
(OFF \(\rightarrow\) ON)

\section*{7. POSITIONING CONTROL}
(d) Servo
program
The servo program No. 506 for constant-speed control is shown below.

(e) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.5 Pass point skip function}

This is a function whereby, by setting a skip signal for each pass point associated with a constant speed control instruction, positioning at the current point can be canceled and positioning carried out at the next point.

\section*{[Data setting]}
(1) Skip signal devices

The following devices can be designated as skip signal devices.
X, Y, M, TC, TT, CC, CT, B, F

\section*{[Notes]}
(1) If absolute circular interpolation is designated at or beyond the point where the skip signal was designated, set absolute linear interpolation up to that point. Otherwise, an error occurs and operation stops.
(2) When a skip signal is input at the final point, deceleration to a stop occurs at that point and the program is ended.

\section*{[Program example]}

\section*{7. POSITIONING CONTROL}

\section*{CAUTION}

The operation that takes place on execution of a skip designated during constant-speed control, when an axis for which "degree" is designated as the unit and which has no stroke range is included, is described here. If, under these conditions, there is an ABS instruction following the skip, the final positioning point and the travel distance in the program as a whole will be the same ragardless of whether the skip is executed or not. Examples are presented below.
(1) When all the instructions after the skip are INC instructions:

Program example
\begin{tabular}{|llr|}
\hline CPSTART1 & & \\
Axis & 1 & \\
Speed & & \\
INC-1 & & \\
Axis & 1, & 180.00000 \\
Skip & & X100 \\
INC-1 & & 180.00000 \\
Axis & 1, & \\
INC-1 & & 270.00000 \\
\begin{tabular}{lll}
Axis \\
CPEND & 1, & \\
\hline
\end{tabular}\({ }^{2}\) & \\
\hline
\end{tabular}

Motion when skip is not executed

Motion when skip is executed (when the skip occurs at 100 [degree])

(2) When the instruction immediately following the skip is an ABS instruction

Program example
\begin{tabular}{|llr|}
\hline CPSTART1 & & \\
Axis & 1 & \\
Speed & & \\
INC-1 & & 10.000 \\
Axis & 1, & 180.00000 \\
Skip & & X100 \\
ABS-1 & & 350.00000 \\
Axis & 1, & 370.00000 \\
\hline INC-1 & & \\
\hline \\
Axis & 1, & 270 \\
CPEND & & \\
\hline
\end{tabular}

Motion when skip is not executed

Motion when skip is executed
(when the skip occurs at 100 [degree])

(3) When the instruction immediately following the skip is an INC instruction and there is an ABS instruction after that
\begin{tabular}{l}
\multicolumn{1}{l|}{ Program example } \\
\begin{tabular}{|llr|}
\hline CPSTART1 & \\
Axis & 1 & \\
SSpeed & & 10.000 \\
INC-1 & & \\
Axis & 1, & 360.00000 \\
Skip & & X100 \\
INC-1 & & \\
Axis & 1, & 180.00000 \\
INC-1 & 1, & 180.00000 \\
Axis & 1, & \\
ABS-1 & 1, & 90.00000 \\
\hline Axis & 1, \\
CPEND & & \\
\hline
\end{tabular}
\end{tabular}

Motion when skip is not executed

Motion when skip is executed (when the skip occurs at 80 [degree])

\section*{7. POSITIONING CONTROL}

\subsection*{7.16.6 FIN signal wait function}

This is a function whereby, when the FIN wait function is selected and an M code is set for each point on the way, the end of processing of each point on the way is synchronized with the FIN signal, and positioning at the subsequent point is carried out when the FIN signal comes ON.

\section*{[Data setting]}
(1) When the FIN signal wait function is selected, the fixed acceleration/deceleration time method is used.
Set the acceleration/deceleration time within the range 1 ms to 5000 ms in the servo program by using the "FIN acceleration/deceleration" option. Indirect setting is also possible by using D and w devices (1 word).

\section*{[Notes]}
(1) If the acceleration/deceleration time designation is outside the permissible range, the servo program setting error "13" will occur on starting and control will be performed with an acceleration/deceleration time of 1000 ms .
(2) When interpolation is performed, the \(M\) code output in progress signal is output for all interpolation axes. In this case, turn ON the signal for one of the interpolating axes.
(3) When an M code is set at the final point, positioning is completed after the FIN signal has gone from OFF to ON to OFF.

\section*{[Program example]}

\section*{POINTS}

The fixed acceleration/deceleration method is a type of acceleration/ deceleration processing whereby even if the command speed changes, the time taken up by acceleration/deceleration remains fixed.

(1) When the fixed acceleration/deceleration method is used, the following processing and parameters are invalidated.
- Rapid stop deceleration time in parameter block
- Completion point designation method for speed change point
- S curve acceleration/deceleration
(2) When the type of positioning operation shown below (constant-speed control) is performed, the speed processing for each axis is as shown below.

Positioning operation

Constant-speed control processing of each axis

\section*{7. POSITIONING CONTROL}

\subsection*{7.17 Position Follow-Up Control}

After a single control start, positioning occurs to the address set with the word device of the servo system CPU designated in the servo program.
Position follow-up control is started using the PFSTART servo program instruction.

O : Must be set
\(\Delta\) : Set if required

\section*{[Control Details]}

\section*{Control Using PFSTART Instruction}
(1) Positioning to the address set with the word device of the servo system CPU designated in the servo program.
(2) Position follow-up control is executed until the stop instruction is input. If the word device value changes while control is progress, positioning is executed to the changed address.

\section*{7. POSITIONING CONTROL}

\section*{[Cautions]}
(1) The number of controllable axes is limited to one.
(2) Only the absolute method (ABS \(\square\)) is used for positioning control to the pass points.
(3) The speed can be changed after control is started.

The changed speed remains valid until the stop command is input.
(4) Set the positioning address in the servo program using indirect designation with the word devices D and W.
(5) Use only even-numbered devices for indirect designation of positioning addresses in a servo program. If odd-numbered devices are used, when an attempt is made to start the control error 141 occurs and control does not start.
(6) Positioning speeds can be set in the servo program using indirect designation with the word devices D and W.
However, this set speed is valid only at the start of position follow-up control (on execution of SVST, instructions) and the speed does not change if the indirect designations are changed while control is in progress.

\section*{[Program Example]}
(1) System configuration

Position follow-up control of Axis 3.

(2) Positioning conditions
(a) The position follow-up conditions are shown below.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Setting \\
\hline Servo program number & 100 \\
\hline Controlled axis & Axis 3 \\
\hline Positioning address & D50 \\
\hline Positioning speed & 20000 \\
\hline
\end{tabular}
(b) Position follow-up control start command leading edge of X000 (OFF \(\rightarrow \mathrm{ON}\))

\section*{7. POSITIONING CONTROL}
(3) Operation timing

The operation timing for position follow-up control is shown below.

(4) Servo program

The servo program No. 100 for position follow-up control is shown below.

\section*{7. POSITIONING CONTROL}
(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.18 Simultaneous Start}

After a single control start, the designated servo programs start simultaneously.
Use the START instruction to simultaneously start servo programs.

O : Must be set
A : Varies with the servo program which makes simultaneous start.

\section*{[Control Details]}

\section*{Control Using START Instruction}
(1) Simultaneously start the designated servo programs.
(2) Any servo program can be designated, except the simultaneous start (START instruction) servo program.
(3) Up to 3 servo programs can be designated.
(4) After the simultaneous start, each axis is controlled by the designated servo program.
[Cautions]
(1) A check is made at the simultaneous start. An error occurs and operation does not start in the cases shown in the table below.
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Error } & \multicolumn{1}{c|}{ Error Processing } & \multicolumn{2}{c|}{ Stored Codes } \\
\cline { 4 - 5 } & & \multicolumn{1}{c|}{ D9189 } & \\
\hline \begin{tabular}{l}
Designated servo program does \\
not exist
\end{tabular} & & & D9190 \\
\hline \begin{tabular}{l}
START instruction designated as \\
servo program
\end{tabular} & \begin{tabular}{l}
Servo program setting error flag \\
(M9079): ON
\end{tabular} & \begin{tabular}{l}
Program number causing error on \\
simultaneous start
\end{tabular} & 19 \\
\cline { 1 - 1 } \begin{tabular}{l}
The designated servo program \\
start axis is already designated.
\end{tabular} & \begin{tabular}{l}
Start accept flag \\
(M2001+n): OFF
\end{tabular} & \begin{tabular}{l}
Program number for which error \\
occurred on simultaneous start
\end{tabular} & \begin{tabular}{l}
Error Item Data \\
(see Section 6.3)
\end{tabular} \\
\hline \begin{tabular}{l}
A servo program cannot start \\
due to an error
\end{tabular} & & &
\end{tabular}
(2) The servo programs cannot be designated for the START instruction using indirect designation.
(3) If the servo programs designated for the START instruction include fixed-pitch feed control or speed/position switching control, start may be delayed a maximum of 1 second compared to other speed control or position control.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes simultaneous start under the conditions below.
(1) System configuration

Simultaneous start of Axis 1 , Axis 2 , Axis 3, and Axis 4.

(2) Quantity and numbers of servo programs designated
(a) Designated servo programs: 3
(b) Designated servo program numbers
\begin{tabular}{|c|c|l|}
\hline Servo Program No. & \multicolumn{1}{|c|}{ Axis } & \multicolumn{1}{|c|}{ Control Details } \\
\hline 1 & 1,2 & \begin{tabular}{l}
Circular interpolation \\
control
\end{tabular} \\
\hline 14 & 3 & Speed control \\
\hline 45 & 4 & Zeroing control \\
\hline
\end{tabular}
(3) Start conditions
(a) Simultaneous start servo program number No. 121
(b) Simultaneous start run command \(\qquad\) leading edge of X100 (OFF \(\rightarrow\) ON)
(4) Servo program

The simultaneous start servo program No. 121 is shown below.

\section*{7. POSITIONING CONTROL}
(5) Sequence program

The sequence program which runs the servo program is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.19 JOG Operation}

Runs the set JOG operation.
Individual start or simultaneous start can be used for JOG operation.
JOG operation can be run from a sequence program or in a peripheral device test mode.
(For information on running JOG operation in a peripheral device test mode, refer to the operation manual for the appropriate peripheral device.)
To carry out JOG operation, the JOG operation must be set for each axis.

\subsection*{7.19.1 JOG operation data}

The JOG operation data is the data required to carry out JOG operation. Set the JOG operation data from a peripheral device.

Table 7.2 Table of JOG Operation Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multicolumn{2}{|c|}{Default} & \multirow{3}{*}{Remarks} & \multirow[t]{3}{*}{\begin{tabular}{l}
Explan- \\
atory \\
Section
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & \multirow[t]{2}{*}{Initial Value} & \multirow[b]{2}{*}{Units} & & \\
\hline & & Setting Range & Units & & & & \\
\hline 1 & \begin{tabular}{l}
JOG \\
speed \\
limit value
\end{tabular} & \[
\begin{gathered}
0.01 \text { to } \\
6000000.00
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mm} / \\
& \mathrm{min}
\end{aligned}
\] & \[
\begin{gathered}
0.001 \text { to } \\
600000.000
\end{gathered}
\] & \begin{tabular}{l}
inch/ \\
min
\end{tabular} & \[
\begin{gathered}
0.001 \text { to } \\
2147483.647
\end{gathered}
\] & \begin{tabular}{l}
degree \\
/ min
\end{tabular} & 1 to 10000000 & PLS/s & 20000 & PLS/s & \begin{tabular}{l}
- Sets the max. speed during JOG operation. \\
- The JOG speed limit value becomes the JOG operation speed if the JOG operation speed is set more than JOG speed limit value.
\end{tabular} & - \\
\hline 2 & \begin{tabular}{l}
Parameter \\
block \\
setting
\end{tabular} & \multicolumn{8}{|c|}{1 to 16} & 1 & - & - Sets the parameter block number used for JOG operation. & 4.4 \\
\hline
\end{tabular}
(1) JOG operation data check

A relative check of the JOG operation data is executed at the following times:
- Power on
- On PLC ready (M2000) leading edge (OFF \(\rightarrow\) ON)
- When test mode is selected.
(2) Data error processing
- Only data for which errors were detected during the relative check is changed to its default value for JOG operation control.
- The error code corresponding to the data for axis where an error was detected is stored in the data register.

\section*{POINT}
(1) JOG operation to a position outside the fixed parameter stroke limit cannot be started.
However, JOG operation is possible in the direction from outside the stroke limit to back inside the stroke limit.

\section*{7. POSITIONING CONTROL}

\subsection*{7.19.2 Individual start}

Starts JOG operation for the designated axes.
JOG operation is controlled by the following JOG operation signals:
- Forward JOG operation \(\qquad\) M3202+20n
- Reverse JOG operation

M3203+20n

\section*{[Control Details]}
(1) JOG operation continues at the speed value stored in the JOG operation speed setting register while the JOG operation signal remains ON and a deceleration stop occurs when the JOG operation signal turns OFF.
Control of acceleration and deceleration is based on the JOG operation data settings.

JOG operation carried out for axis for which the JOG operation signal is ON.
(2) The JOG operation signal, JOG operation setting register, and setting range for each axis are shown in the table below.

\section*{POINT}

To set the JOG operation speed using a sequence program, store a value in the JOG operation speed setting register which is 100 times the real speed in units of millimeters or 1000 times the speed in units of inches or degrees.
- Example

To set a JOG operation speed of \(6000.00 \mathrm{~mm} / \mathrm{min}\)., store the value 600000 in the JOG operation speed setting register.

\section*{7. POSITIONING CONTROL}

\section*{[Cautions]}
(1) Forward JOG operation occurs if the forward JOG signal (M3202+20n) and reverse JOG signal (M3203+20n) turn ON simultaneously for a single axis. When the axis decelerated to a stop after the forward JOG signal had turned OFF, reverse JOG operation is not performed if the reverse JOG signal is ON. Reverse JOG operation is started when the reverse JOG signal is turned from OFF to ON after that.

(2) If the JOG operation signal turns ON during deceleration which was started when the JOG operation signal turned OFF, JOG operation is not performed after the axis has decelerated to a stop. JOG operation is started when the JOG operation signal is turned from OFF to ON after that.

(3) JOG operation cannot be started by the JOG operation signals (M3202+20n/M3203+20n) in a peripheral device test mode.
JOG operation starts on the leading edge (OFF \(\rightarrow\) ON) of the JOG operation signal after the test mode is reset.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes JOG operation under the conditions below.
(1) System configuration JOG operation of Axis 4.

(2) JOG operation conditions
(a) Axis number
Axis 4
(b) JOG operation speed 1000
(c) JOG operation commands
1) Forward JOG operation........ \(X 000 \mathrm{ON}\)
2) Reverse JOG operationX001 ON
(3) Sequence program

\section*{7. POSITIONING CONTROL}

\subsection*{7.19.3 Simultaneous start}

Simultaneously starts JOG operation designated for multiple axes.

\section*{[Control Details]}
(1) JOG operation continues at the speed value stored in the JOG operation speed setting register for each axis while the JOG simultaneous start command (M2048) remains ON, and a deceleration stop occurs when M2048 turns OFF. Control of acceleration and deceleration is based on the JOG operation data settings.

(2) JOG operation is carried out on the axis set in the JOG simultaneous start axis setting area (D710 to D713).

\section*{7. POSITIONING CONTROL}
(3) The JOG operation speed setting registers are described below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{JOG Operation}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{JOG Operation Setting Register}} & \multicolumn{8}{|c|}{Setting Range} \\
\hline & & & & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} \\
\hline & Forward JOG & Reverse JOG & \begin{tabular}{l}
Most \\
Significant
\end{tabular} & Least Significant & Setting Range & Units \\
\hline 1 & \multicolumn{4}{|l|}{\multirow[t]{32}{*}{}} & \multirow{32}{*}{\[
\begin{gathered}
1 \text { to } \\
600000000
\end{gathered}
\]} & \multirow{32}{*}{\[
\begin{aligned}
& 10^{-2} \\
& \mathrm{~mm} / \\
& \mathrm{min}
\end{aligned}
\]} & \multirow{32}{*}{\[
\begin{gathered}
1 \text { to } \\
600000000
\end{gathered}
\]} & \multirow{32}{*}{\begin{tabular}{l}
\(10^{-3}\) \\
inch/ \\
min
\end{tabular}} & & & & \\
\hline 2 & & & & & & & & & & & & \\
\hline 3 & & & & & & & & & & & & \\
\hline 4 & & & & & & & & & & & & \\
\hline 5 & & & & & & & & & & & & \\
\hline 6 & & & & & & & & & & & & \\
\hline 7 & & & & & & & & & & & & \\
\hline 8 & & & & & & & & & & & & \\
\hline 9 & & & & & & & & & & & & \\
\hline 10 & & & & & & & & & & & & \\
\hline 11 & & & & & & & & & & & & \\
\hline 12 & & & & & & & & & & & & \\
\hline 13 & & & & & & & & & & & & \\
\hline 14 & & & & & & & & & & & & \\
\hline 15 & & & & & & & & & & & & \\
\hline 16 & & & & & & & & & 1 to & de- & 1 to & PLS/ \\
\hline 17 & & & & & & & & & \[
2147483647
\] & gree/m & 10000000 & s \\
\hline 18 & & & & & & & & & & & & \\
\hline 19 & & & & & & & & & & & & \\
\hline 20 & & & & & & & & & & & & \\
\hline 21 & & & & & & & & & & & & \\
\hline 22 & & & & & & & & & & & & \\
\hline 23 & & & & & & & & & & & & \\
\hline 24 & & & & & & & & & & & & \\
\hline 25 & & & & & & & & & & & & \\
\hline 26 & & & & & & & & & & & & \\
\hline 27 & & & & & & & & & & & & \\
\hline 28 & & & & & & & & & & & & \\
\hline 29 & & & & & & & & & & & & \\
\hline 30 & & & & & & & & & & & & \\
\hline 31 & & & & & & & & & & & & \\
\hline 32 & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes simultaneous start of JOG operations under the conditions below.
(1) System configuration

JOG operation of Axis 1, Axis 2, and Axis 4.

(2) JOG operation conditions
(a) The JOG operation conditions are tabled below.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{3}{c|}{ JOG } \\
\hline Axis number & Axis 1 & Axis 2 & Axis 4 \\
\hline JOG operation speed & 1000 & 500 & 1000 \\
\hline JOG operation direction & Forward & Forward & Reverse \\
\hline
\end{tabular}
(b) JOG operation command X000 ON
(3) Sequence program

\section*{7. POSITIONING CONTROL}

\subsection*{7.20 Manual Pulse Generator Operation}

Positioning control according to the number of pulses input from the manual pulse generator.
Simultaneous operation of 1 to 3 -axes is possible with one manual pulse generator; the number of modules that can be connected is as shown below.

\section*{POINT}
- When the A273UHCPU is used and two or more A273EX modules are loaded, connect a manual pulse generator to the first A273EX (counted from slot 0 of the CPU base).
(The manual pulse generator is valid for the first module only.)
- When the A173UHCPU is used, one A172SENC is required per manual pulse generator. Connect a manual pulse generator to each of the first to third A172SENC.

\section*{[Control Details]}
(1) Positioning of the axis set in the manual pulse generator axis setting register according to the PULSE input from the manual pulse generator.
Manual pulse generator operation is only valid while the manual pulse generator enable flag is ON.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Manual Pulse Generator \\
Connecting Position
\end{tabular} & \begin{tabular}{c}
Manual Pulse Generator \\
Axis Setting Register
\end{tabular} & \begin{tabular}{c}
Manual Pulse Generator \\
Enable Flag
\end{tabular} \\
\hline P1 & D714, D715 & M2051 \\
\hline P2 & D716, D717 & M2052 \\
\hline P3 & D718, D719 & M2053 \\
\hline
\end{tabular}

\section*{7. POSITIONING CONTROL}
(2) The travel value and output speed are shown below for positioning control due to manual pulse generator output.
(a) Travel value

The travel value due to the input of PULSE from a manual pulse generator is calculated using the following formula.
\([\) travel value \(]=[\) travel value per PULSE \(] \times[\) number of input PULSE \(] \times\)
\([\) [manual pulse generator input multiplication factor setting \(]\)
\(\begin{array}{r}{[\text { Travel value }} \\ \text { per pulse }]\end{array}=\frac{[\text { Travel value per rotation }(A L)] \times[\text { Unit magnification }(A M)]}{[\text { Number of PULSE per rotation }(A P)]}\)
The travel value per PULSE during manual PULSE generator operation is shown in the following table.
\begin{tabular}{|c|c|}
\hline Units & Travel Value \\
\hline mm & \(0.1 \mu \mathrm{~m}\) \\
\hline inch & 0.00001 inch \\
\hline degree & 0.00001 degree \\
\hline PULSE & 1 PULSE \\
\hline
\end{tabular}

For units of millimeters, the commanded travel value for input of one pulse is: \((0.1 \mu \mathrm{~m}) \times(1\) PULSE \() \times\) (manual pulse generator input magnification setting)
(b) Output speed

The output speed is the positioning speed corresponding to the number of PULSE input from a manual pulse generator in unit time.
[output speed] \(=\) [input PULSE per 1 ms\(] \times\)
[manual PULSE generator input multiplication factor setting]
(3) Setting the axis controlled by the manual pulse generator
(a) The axis controlled by the manual pulse generator are set in the manual pulse generator axis setting register (D714 to D719).
\[
\begin{aligned}
& \text { :--- Example } \\
& \text {--- } \\
& \text { Make the following setting when controlling axis } 1,22 \text { and } 30 \text { using the man- } \\
& \text { ual pulse generator } 1 \text {. }
\end{aligned}
\]
(1) Setting made in
\begin{tabular}{|l|l|l|}
\hline DMOV & H20200001 & D714 \\
\hline
\end{tabular}
hexadecimal (H)
\(\begin{aligned} & \text { (2) Setting made } \\
& \text { in decimal (} K \text {) }\end{aligned}\)
in decimal (K)
(4) Manual pulse generator 1-pulse input magnification setting
(a) Make magnification setting for 1 pulse input from the manual pulse generator axis-by-axis.
\begin{tabular}{|c|c|c|}
\hline 1- PULSE Input Magnification Setting Register & Corresponding Axis No. & Setting Range \\
\hline D720 & Axis 1 & \multirow{32}{*}{1 to 100} \\
\hline D721 & Axis 2 & \\
\hline D722 & Axis 3 & \\
\hline D723 & Axis 4 & \\
\hline D724 & Axis 5 & \\
\hline D725 & Axis 6 & \\
\hline D726 & Axis 7 & \\
\hline D727 & Axis 8 & \\
\hline D728 & Axis 9 & \\
\hline D729 & Axis 10 & \\
\hline D730 & Axis 11 & \\
\hline D731 & Axis 12 & \\
\hline D732 & Axis 13 & \\
\hline D733 & Axis 14 & \\
\hline D734 & Axis 15 & \\
\hline D735 & Axis 16 & \\
\hline D736 & Axis 17 & \\
\hline D737 & Axis 18 & \\
\hline D738 & Axis 19 & \\
\hline D739 & Axis 20 & \\
\hline D740 & Axis 21 & \\
\hline D741 & Axis 22 & \\
\hline D742 & Axis 23 & \\
\hline D743 & Axis 24 & \\
\hline D744 & Axis 25 & \\
\hline D745 & Axis 26 & \\
\hline D746 & Axis 27 & \\
\hline D747 & Axis 28 & \\
\hline D748 & Axis 29 & \\
\hline D749 & Axis 30 & \\
\hline D750 & Axis 31 & \\
\hline D751 & Axis 32 & \\
\hline
\end{tabular}
(5) At the leading edge of the manual pulse generator enable flag, a check is made in the manual pulse generator 1- PULSE input magnification setting registers of the manual pulse generator input magnifications set for the appropriate axis. If an out-of-range value is detected, the manual pulse generator axis setting error register (D9185 to D9187) and manual pulse generator axis setting error flag (M9077) are set and a value of 1 is used for the magnification.
(6) Manual pulse generator smoothing magnification setting Set a magnification to smooth the leading edge and trailing edge of manual pulse generator operation.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Manual Pulse Generator Smoothing \\
Magnification Setting Register
\end{tabular} & \begin{tabular}{c}
Setting \\
Range
\end{tabular} \\
\cline { 1 - 2 } Manual Puls Generator (P1) : D752 & \multirow{3}{*}{0 to 59} \\
\cline { 1 - 2 } \begin{tabular}{|c|}
\hline \multicolumn{2}{|c|}{ Manual Puls Generator (P2) : D753 } & \\
\cline { 1 - 2 } Manual Puls Generator (P3) : D754
\end{tabular} \\
\hline
\end{tabular}
(a) Operation

Output speed \((\mathrm{V} 1)=\left[\begin{array}{l}\text { number of input } \\ \text { PULSES } / \mathrm{ms}\end{array}\right] \times\left[\begin{array}{l}\text { manual pulse generator } 1 \\ \text { PULSE input magnifica- } \\ \text { tion setting }\end{array}\right]\)
Travel value \((\mathrm{L})=\left[\begin{array}{l}\text { travel value } \\ \text { per PULSE }\end{array}\right] \times\left[\begin{array}{l}\text { number of } \\ \text { input } \\ \text { PULSES }\end{array}\right] \times\left[\begin{array}{l}\text { manual pulse generator } 1 \\ \text { PULSE input magnifica- } \\ \text { tion setting }\end{array}\right]\)

\section*{REMARKS}
(1) The travel value per manual pulse generator pulse is as follows.
- Setting unit
 mm
: \(0.1 \mu \mathrm{~m}\) inch : 0.00001 inch
___ degree : 0.00001 degree
_ P PULSE : 1 PULSE
(2) The smoothing time constant is a value in the range 56.8 ms to 3408 ms .
(7) Details of errors occurring during the setting of data for manual pulse generator operation are shown in the table below.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error Details } & \multicolumn{1}{c|}{ Error Processing } \\
\hline \begin{tabular}{l}
A digit was set outside the \\
ranges 1 to 32.
\end{tabular} & \begin{tabular}{l}
• Digit ignored where error occurred. \\
\(\bullet\)
\end{tabular} \\
\hline \begin{tabular}{l}
Manual pulse generator of valid axis with settings in rang es 1 \\
to 32.
\end{tabular} \\
\begin{tabular}{l}
manual pulse generator opera- \\
tion.
\end{tabular} & \begin{tabular}{l}
• Duplicated designated axis ignored. \\
• Executes the manual pulse generator operation set first.
\end{tabular} \\
\hline More than 4 digits set & \(\bullet\) All set axes ignored \\
\hline
\end{tabular}

\section*{[Cautions]}
(1) The start accept flag turns ON for axis during manual pulse generator operation.
Consequently, positioning control or zeroing cannot be started by the servo system CPU or a peripheral device.
Turn OFF the manual pulse generator enable flag when manual pulse generator operation is complete.
(2) The torque limit value is fixed at \(300 \%\) during manual pulse generator operation.
(3) When the manual pulse generator enable flag comes ON for a driven axis, for example one performing positioning control or JOG operation, error 214 is set for the relevant axis and manual pulse generator input is not enables. After the axis has been stopped, the rise of the manual pulse generator enable flag is validated, the manual pulse generator input enabled status is established, the start accept flag comes ON, and input from the manual pulse generator is accepted.
(4) If the manual pulse generator enable flag for another manual pulse generator No. is turned ON for an axis currently performing manual pulse generator operation, error 214 is set for the relevant axis and the input of that manual pulse generator is not enabled.
(5) If, after the manual pulse generator enable flag has been turned OFF, it is turned ON again for an axis that is performing smoothing deceleration, error 214 is set and manual pulse generator input is not enabled. Turn the manual pulse generator enable flag ON after smoothing deceleration to a stop (after the start accept flag has gone OFF).
(6) If, after the manual pulse generator enable flag has been turned OFF, another axis is set during smoothing deceleration and the same manual pulse generator enable flag is turned ON again, manual pulse generator input will not be enabled. In this case, the manual pulse generator axis setting error bit of the manual pulse generator axis setting error storage register (D9185 to D9187) comes ON, and the manual pulse generator axis setting error flag (M9077) comes ON. Establish an interlock such that the start accept flag of the designated axis going OFF is a condition for the manual pulse generator enable flag coming ON.

\section*{7. POSITIONING CONTROL}

\section*{[Procedure for Manual Pulse Generator Operation]}

The procedure for manual pulse generator operation is shown below.

\section*{7. POSITIONING CONTROL}

\section*{[Program Example]}

This program executes manual pulse generator operation under the conditions below.
(1) System configuration Manual pulse generator operation of Axis 1.

(2) Manual pulse generator operation conditions
(a) Manual pulse generator operation axis.............. Axis 1
(b) Manual pulse generator 1 PULSE input 100 magnification
(c) Manual pulse generator operation enable \(\qquad\) leading edge of X000 (OFF \(\rightarrow\) ON)
(d) Manual pulse generator operation complete leading edge of X001 (OFF \(\rightarrow\) ON)
(3) Sequence program

A sequence program for manual pulse generator operation is shown below.

\section*{7. POSITIONING CONTROL}

\subsection*{7.21 Home Position Return}
(1) Use zeroing at power on and other times where confirmation that axis is at the machine home position is required.
(2) The following three methods of home position return are available:
- Proximity dog method
- Count method
- Data set method. \(\qquad\) system
...Recommended for an absolute-position system
(3) To carry out zeroing, the zeroing data must be set for each axis.

\subsection*{7.21.1 Zeroing data}

The zeroing data is the data required to carry out zeroing.
Set the zeroing data from a peripheral device.
Table 7.3 Table of Home Position Return Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{No.} & \multirow{3}{*}{Item} & \multicolumn{8}{|c|}{Setting Range} & \multirow[t]{3}{*}{\[
\begin{array}{c|}
\hline \text { Default } \\
\hline \text { Initial } \\
\text { Value } \\
\hline
\end{array}
\]} & \multirow{3}{*}{Remarks} & \multirow[t]{3}{*}{Explanatory Section} \\
\hline & & \multicolumn{2}{|l|}{mm} & \multicolumn{2}{|l|}{inch} & \multicolumn{2}{|l|}{degree} & \multicolumn{2}{|l|}{PULSE} & & & \\
\hline & & Setting Range & Units & & & \\
\hline 1 & Zeroing direction & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : reverse direction (decreased address) \\
1: forward direction (increased address)
\end{tabular}} & 0 & - Sets the direction for zeroing. & - \\
\hline 2 & Zeroing method & \multicolumn{8}{|l|}{\begin{tabular}{l}
0 : near-zero point dog method \\
1: count method \\
2: data set method
\end{tabular}} & 0 & \begin{tabular}{l}
- Sets the zeroing method. \\
- The proximity dog method or count method is recommended for a servo amplifier which does not support absolute data, and the data set method is recommended for a servo amplifier which supports absolute data.
\end{tabular} & - \\
\hline 3 & \begin{tabular}{l}
Home \\
position \\
address
\end{tabular} & \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647
\end{gathered}
\] & \[
\begin{gathered}
\times 10^{-1} \\
\mu \mathrm{~m}
\end{gathered}
\] & \[
\begin{aligned}
& -2147483648 \\
& \text { to } 2147483647
\end{aligned}
\] & \[
\begin{aligned}
& \times 10^{-5} \\
& \text { inch }
\end{aligned}
\] & 0 to 35999999 & \[
\left\lvert\, \begin{gathered}
\times 10^{-5} \\
\text { degree }
\end{gathered}\right.
\] & \[
\begin{gathered}
-2147483648 \\
\text { to } 2147483647
\end{gathered}
\] & PLS & 0 & \begin{tabular}{l}
- Sets the current value of the home position after zeroing. \\
- It is recommended that the home position address is set at the stroke limit upper limit or lower limit.
\end{tabular} & - \\
\hline 4 & Zeroing speed & \[
\begin{gathered}
0.01 \text { to } \\
6000000.00
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mm} / \\
\mathrm{min}
\end{gathered}
\] & \[
\begin{gathered}
0.001 \text { to } \\
600000.000
\end{gathered}
\] & \begin{tabular}{l}
inch/ \\
min
\end{tabular} & \[
\begin{gathered}
0.001 \text { to } \\
2147483.647
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { degree } \\
1 \\
\text { min } \\
\hline
\end{array}
\] & 1 to 10000000 & PLS/s & 1 & - Sets the speed for zeroing. & - \\
\hline 5 & \begin{tabular}{l}
Creep \\
speed
\end{tabular} & \[
\begin{gathered}
0.01 \text { to } \\
6000000.00
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mm} / \\
& \mathrm{min}
\end{aligned}
\] & \[
\begin{gathered}
0.001 \text { to } \\
600000.000
\end{gathered}
\] & \begin{tabular}{l}
inch/ \\
min
\end{tabular} & \[
\begin{gathered}
0.001 \text { to } \\
2147483.647
\end{gathered}
\] & \begin{tabular}{l}
degree \\
min
\end{tabular} & 1 to 10000000 & PLS/s & 1 & - Sets the creep speed (low speed immediately before stopping after deceleration from zeroing speed) after the proximity dog. & - \\
\hline 6 & Travel value after proximity dog & \[
\begin{gathered}
0 \text { to } \\
214748364.7
\end{gathered}
\] & \(\mu \mathrm{m}\) & \[
\begin{gathered}
0 \text { to } \\
21474.83647
\end{gathered}
\] & inch & \[
\begin{gathered}
0 \text { to } \\
21474.83647
\end{gathered}
\] & degree & \[
\begin{gathered}
0 \text { to } \\
2147483647
\end{gathered}
\] & PLS & - & \begin{tabular}{l}
- Sets the travel value after the proximity dog for the count method. \\
- Set more than the deceleration distance at the zeroing speed.
\end{tabular} & \begin{tabular}{l}
7.21.1 \\
(1)
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
Parameter \\
block \\
setting
\end{tabular} & \multicolumn{8}{|c|}{1 to 64} & 1 & - Sets the parameter block to use for zeroing (see Section 4.4). & - \\
\hline
\end{tabular}
(1) Setting the travel value after proximity dog
(a) This parameter sets the travel value after the proximity dog turns ON for zeroing using the count method.
(b) After the proximity dog turns ON, the home position is the first zero-point after travel by the set travel value is complete.
(c) Set the travel value after the proximity dog turns ON more than the deceleration distance at the zeroing speed.

\section*{POINT}

A zeroing must be made after the servo motor has been rotated more than one revolution to pass the axis through the Z-phase (motor reference position signal).
For a proximity dog type or count type zeroing, the distance between the point where the zeroing program is started and the deceleration stop point before second travel must be such that the servo motor is rotated more than one revolution to pass the axis through the Z-phase.
When a data setting type zeroing is made in an ABS (absolute position) system, the motor must also have been rotated more than one revolution by JOG operation or the like to pass the axis through the Z-phase.

\section*{7. POSITIONING CONTROL}

\subsection*{7.21.2 Zeroing by the proximity dog method}
(1) Proximity dog method

Using the proximity dog method, the home position is the first zero point after the proximity dog turns OFF.
(2) Zeroing by the proximity dog method The zeroing operation using the proximity dog method is shown in Fig. 7.31.

Fig. 7.31 Operation of Zeroing by the Proximity Dog Method
(3) Running zeroing

To run zeroing, use the servo program described in Section 7.21.5.
(4) Cautions

Take note of the following points during zeroing by the proximity dog method.
(a) Keep the proximity dog ON during deceleration from the zeroing speed to the creep speed.
A deceleration stop occurs if the proximity dog turns OFF before deceleration to the creep speed, and the proximity becomes the home position.

\section*{7. POSITIONING CONTROL}
(b) Adjust the position where the proximity dog turns OFF, such that the zeroing second travel value becomes half the travel value for one revolution of the motor.
A home position discrepancy equivalent to one revolution of the motor may occur if the zeroing travel value is less than half the travel value for one revolution of the motor.

\section*{IMPORTANT}
(1) In the following cases, before starting the zeroing, use JOG operation or some other method to return the axis to a position before where the proximity dog turned ON. Zeroing will not start unless the axis is returned to a position before the proximity dog position.
(a) Zeroing from a position after the proximity dog turned OFF.
(b) When the power is turned ON after zeroing was completed.

\section*{7. POSITIONING CONTROL}

\subsection*{7.21.3 Zeroing by the count method}
(1) Count method

Using the count method, the home position is the first zero point after a designated distance (travel value after proximity dog turns ON) after the proximity dog turns ON.
The travel value after the proximity dog turns ON is set in the table of zeroing data shown in section 7.21.1.
(2) Zeroing by the count method

The zeroing operation using the count method is shown in Fig. 7.32.

Fig. 7.32 Operation of Zeroing by the Count Method
(3) Running zeroing

To run zeroing, use the servo program described in Section 7.21.5.
(4) Cautions
(a) Maintain sufficient distance between the position where the proximity dog turns OFF and the home position.
(b) Using the count method, zeroing or resumptive start of zeroing is possible when the proximity dog turns ON. To carry out zeroing or resumptive start of zeroing when the proximity dog turns ON , return the axis to a position where the proximity dog is OFF before starting the zeroing.

\section*{7. POSITIONING CONTROL}

\subsection*{7.21.4 Zeroing by the data set method}
(1) Data set method

The data set method is a zeroing method which does not use the proximity dogs. This method can be used with the absolute position system.
(2) Zeroing by the data set method

The address current value becomes the home position address when the zeroing operation is run with the SVST instruction.

Fig. 7.33 Operation of Zeroing by the Date Set Method
(3) Executing zeroing

To execute zeroing, use the servo program described in Section 7.21.5.
(4) Cautions
(a) A zero point must be passed between turning on the power and executing zeroing.
A no zero point passed error occurs if zeroing is executed before a zero point is passed.
After a no zero point passed error occurs, reset the error and turn the servo motor at least one revolution using JOG operation before running the zeroing operation again.
Use the zero point passed signal (\(\mathrm{M} 2406+20 n\)) to check that a zero point is passed.
(b) Starting zeroing with the data set method when not using the absolute position system has the same function as the current value change command.
(c) The zeroing data required for the data set method are the zeroing method and home position address.

\section*{7. POSITIONING CONTROL}

\subsection*{7.21.5 Zeroing servo program}

Zeroing uses the ZERO servo instruction.

\section*{[Control Details]}
(1) Zeroing is carried out using the method designated in the zeroing data (see Section 7.21.1).
Refer to the following sections for details about the zeroing methods:
- Proximity dog methodSection 7.21.2
- Count method

Section 7.21.3
- Data set method

Section 7.21.4

\section*{[Caution]}
(1) If the following circuit conducts zeroing using the proximity dog method after the PLC ready flag (M2000) turns ON but before the PCPU ready flag (M9074) turns ON , another zeroing request is issued after zeroing is complete. Therefore, apply interlock conditions to M9074 and M2402+20n (in-position signal) when carrying out a zeroing. (See program example.)

\section*{7. POSITIONING CONTROL}
[Program Example]
This program carries out zeroing using servo program No. 0 , under the conditions below.
(1) System configuration Zeroing of Axis 4.

(2) Servo program example

Servo program No. 0 for zeroing is shown below.

(3) Sequence program example

The sequence program which runs the servo program is shown below.
(M2000)-

\section*{7. POSITIONING CONTROL}

\subsection*{7.22 High-Speed Oscillation}

Positioning of a designated axis is

\section*{[Control details]}

The designated axis caused to oscillate on a designated sine wave.
Acceleration/deceleration processing is not performed.

Starting angle
(1) Amplitude

Designate the amplitude of the oscillation in the setting units.
The amplitude can be set in the range 1 to 2147483647.
(2) Starting angle

Set the angle on the sine curve at which oscillation is to start.
The setting range is 0 to 359.9 (degrees)
(3) Frequency

Set how many sine curve cycles occur in one minute.
The setting range is 1 to 5000 (CPM).

\section*{POINT}

Since acceleration/deceleration processing is not performed, you should set the starting angle to 90 degrees or 270 degrees in order to avoid an abrupt start.

\section*{7. POSITIONING CONTROL}

\section*{[Notes]}
(1) If the amplitude setting is outside the permissible range, the servo program setting error " 25 " occurs and operation does not start.
(2) If the starting angle setting is outside the permissible range, the servo program setting error " 26 " occurs and operation does not start.
(3) If the frequency setting is outside the permissible range, the servo program setting error "27" occurs and operation does not start.
(4) After starting, operation is continually repeated until a stop signal is input.
(5) Speed changes during operation are not possible. Attempted speed changes will cause minor error "310".

\section*{[Example program]}

An example of a program for high-speed oscillation is shown below.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

This section describes the auxiliary and applied functions available for positioning control by the servo system CPU.
(1) Limit switch output function Section 8.1
(2) M-code output function Section 8.2
(3) Backlash compensation function Section 8.3
(4) Torque limit function Section 8.4
(5) Electronic gear function Section 8.5
(6) Absolute positioning system Section 8.6
(7) Skip function Section 8.7
(8) Teaching function Section 8.8
(9) High-speed reading of designated data Section 8.9
(10) Servo program cancel/start function Section 8.10
(11) Enhanced Current Value Control Section 8.11

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.1 Limit Switch Output Function}

The limit switch output function allows the A1SY42 output module or AY42 output module to output ON/OFF signals corresponding to the positioning address set for each axis.

\subsection*{8.1.1 Limit switch output data}
\begin{tabular}{|c|c|c|c|}
\hline Item & Settings & Initial Value & Comments \\
\hline ON/OFF point setting & \begin{tabular}{ll}
\(\bullet-2147483648\) to 2147483647 & Units \\
\(\left(\times 10^{-1} \mu \mathrm{~mm}, \times 10^{-5}\right.\) inch, PULSE \()\) & \(\left(\begin{array}{c}\times 10^{-1} \mu \mathrm{~m} \\
\times 10^{-5} \text { inch } \\
10^{-5} \text { degree } \\
(1035999999 \\
\text { PLS }\end{array}\right)\)
\end{tabular} & 0 & - Up to 10 points can be set for each axis. \\
\hline
\end{tabular}

\subsection*{8.1.2 Limit switch output function}

\section*{[Control Details]}
(1) The limit switch function outputs the ON/OFF pattern from the A1SY42/ AY42 at the set addresses.
Before running the limit switch output function, the ON/OFF point addresses and the ON/OFF pattern must be set from a peripheral device.
(Settings cannot be made by the sequence program.)
The number of limit switch outputs per axis and the ON/OFF points are as follows:
(a) Number of limit switch output points \(\qquad\) 8 points/axis, total 256 points
(b) ON/OFF points \(\qquad\) 10 points/axis Set an address in the stroke limit range for each point.

(2) Limit Switch Enable/Disable Setting

The following devices can be used to enable or disable the limit switch output from each axis or each point.

Table 8.1 Limit Switch Enable/Disable Settings
\begin{tabular}{|c|c|c|c|}
\hline Set Data/Device & Setting Unit & Processing & Set Data Valid Timing \\
\hline \multirow{4}{*}{Limit switch output used/not used setting in the fixed parameters.} & \multirow{4}{*}{Axis} & Used & \multirow[t]{4}{*}{\begin{tabular}{l}
(1) Leading edge of sequencer ready (M2000) \\
(2) When test mode is started
\end{tabular}} \\
\hline & & Set ON/OFF pattern can be output for the appropriate axis. & \\
\hline & & Not Used & \\
\hline & & All outputs OFF for the appropriate axis. & \\
\hline \multirow{4}{*}{Limit switch output enable signal
(M3206 + 20n)} & \multirow{4}{*}{Axis} & ON & \multirow{4}{*}{Limit switch output used/not used setting in the fixed parameters is set to "used."} \\
\hline & & ON/OFF pattern is output for the appropriate axis based on the set ON/OFF pattern and the limit switch output disable setting registers (D760 and D775). & \\
\hline & & OFF & \\
\hline & & All outputs OFF for the appropriate axis. & \\
\hline \multirow{4}{*}{Limit switch output disable setting registers (D760 and D775)} & \multirow{4}{*}{Point} & Disable bit (1) & \multirow{4}{*}{While M3206 + 20n is ON.} \\
\hline & & Outputs corresponding to disable bits set to "1" are OFF. & \\
\hline & & Enable bit (0) & \\
\hline & & Outputs corresponding to enable bits set to "0" output an ON/OFF pattern based on the set ON/OFF pattern. & \\
\hline
\end{tabular}

\section*{REMARK}

The data in Table 8.1 is also valid during the test mode set by a peripheral device.

\section*{(3) Cautions}
(a) The limit switch output is based on the "feed current value" for each axis after sequencer ready (M2000) turns ON and the PCPU ready flag (M9074) is ON .
All points turn OFF when the PCPU ready flag (M9074) turns OFF.
(b) While the PCPU ready flag (M9074) is ON and the feed current value is outside the set stroke limits, the limit switch output is based on M3206 + 20n.
Consequently, the user should apply an interlock to ensure that the sequence program turns M3206 + 20n ON inside the stroke limit range only.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.2 M-Code Output Function}

An M-code is a code number between 0 and 255 which can be set for each positioning control. During positioning control execution, these M-codes are read by the sequence program to check the current servo program and to command auxiliary operations, such as clamping, drill rotation, and tool changing.
(1) Setting M-codes

The M-code can be set when a servo program is written or modified using a peripheral device. One M -code can be set for each servo program.
(2) M-code storage and read timing
(a) M-codes are stored in the M -code register for the designated axis on positioning start completion and at designated points (speed switching control, constant-speed control).
During interpolation control, the M-code is stored for all axes under interpolation control.
(b) To read an M -code on positioning start completion, use the positioning start completion signal (M2400 + 20n) as the read command.
(c) To read an M-code on positioning completion, use the positioning completion signal (M2400 + 20n) as the read command.

\section*{Position control or speed control}

(3) Resetting M-codes

The M-codes can be reset by clearing the M-code output devices to zero.
Use this method during positioning control to carry out operations unrelated to the servo program, such as when it has been difficult to output the M-code during the previous positioning control.
However, an M-code output from the servo program takes priority over an Mcode set for an intermediate point under speed switching control or constantspeed control.
(4) Program example
(a) A sequence program to read M -codes is shown below, using the following conditions.
1) Axis used Axis 3
2) Processing on positioning start due to M-code M-code number output as BCD code from Y110 to Y118
3) Processing on positioning completion due to M-code
a) if M -code \(=3\)
turn ON Y120
b) if M -code \(=5\).
turn ON Y121
c) if M-code is not 3 or 5
turn ON Y122
(b) The sequence program based on the above conditions is shown below.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.3 Backlash Compensation Function}

The backlash compensation function compensates for the backlash amount in the mechanical system. When the backlash compensation amount is set, extra pulses equivalent to the backlash compensation amount are output after a change in travel direction resulting from positioning control, JOG operation, or manual pulse generator operation.

Fig.8.1 Backlash Compensation Amount
(1) Setting the backlash compensation amount

The backlash compensation amount is one of the fixed parameters, and is set for each axis using a peripheral device.
The setting range differs according to whether mm, inch, degree, or pulse units are used, as shown below.
(a) Millimeter units
\[
\left\{\begin{array}{l}
\bullet 0 \text { to } 6553.5 \\
\bullet 0 \leq \frac{\text { (Backlash compensation amount) }}{\text { (Travel value per PULSE) }} \leq 65535 \text { (PLS) }
\end{array}\right.
\]
(Decimal fraction rounded down.)
(b) Inch or Degree Units
\[
\left\{\begin{array}{l}
\bullet 0 \text { to } 0.65535 \\
\bullet 0 \leq \frac{\text { (Backlash compensation amount) }}{\text { (Travel value per PULSE) }} \leq 65535 \text { (PLS) }
\end{array}\right.
\]
(Decimal fraction rounded down.)
(c) Pulse Units

(2) Backlash compensation processing

The details of backlash compensation processing are shown in the table below.
Table 8.2 Details of Backlash Compensation Processing
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ Processing } \\
\hline First motion after power on & \begin{tabular}{l}
\(\bullet\) \\
• No backlash compensation if travel direction = zeroing \\
direction. \\
• Backlash compensation if travel direction \(=\) zeroing direction.
\end{tabular} \\
\hline JOG operation start & \begin{tabular}{l}
\(\bullet\) Minimum backlash amount on first JOG operation after travel \\
direction change.
\end{tabular} \\
\hline Positioning start & \(\bullet\) Backlash compensation if travel direction changed. \\
\hline \begin{tabular}{l}
Manual PULSE generator \\
operation
\end{tabular} & • If travel direction changed. \\
\hline Zeroing start & \begin{tabular}{l}
\(\bullet\) Backlash compensation amount is valid after zeroing is \\
started.
\end{tabular} \\
\hline Absolute position system & \begin{tabular}{l}
\(\bullet\) Status stored at power off and applied to absolute position \\
system.
\end{tabular} \\
\hline
\end{tabular}

\section*{POINTS}
(1) The feed pulses equivalent to the backlash compensation amount are not added to the feed current value.
(2) Zeroing is required after the backlash compensation amount is changed. The original backlash compensation amount is retained until zeroing is carried out.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.4 Torque Limit Function}

The torque limit function controls the torque generated by the servomotor within the set range.
The torque is controlled to the set torque limit value if the torque required during positioning control exceeds the set limit value.
(1) Torque limit value set range

Set the torque limit value between \(1 \%\) and \(500 \%\) of the rated torque.
(2) How to set the torque limit value

Set the torque limit value using a peripheral device, as described below.
(a) Setting in the Parameter Block (See Section 4.4)

Set the Torque limit value parameter in the parameter block.
Using the servo program to designate which parameter block number is used allows the servomotor torque to be controlled to a torque limit value for any positioning control.
(b) Setting with a Servo Program

Designating the torque limit value with the servo program allows restriction of the servomotor torque to the designated torque limit value during execution of the servo program.

\section*{Examples}
[Setting the torque limit value for speed switching control (VSTART)]
(1) Servo program

(2) Parameter block

(3) General description of operation

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.5 Electronic Gear Function}

The electronic gear function changes the travel value per PULSE.
The electronic gear is set by setting the travel value per PULSE (see Section
4.2.1).

Using the electronic gear function allows positioning control without the need to select the encoder to match the mechanical system.
[Example]

PULSES per motor revolution
10000 [PLS]
Travel value per motor revolution 10 mm [mm]
(1) Electronic gear 1:1 (electronic gear setting = 1)

Travel value per PULSE \(=\frac{\text { Travel value per motor revolution }}{\text { PULSES per motor revolution }}=\frac{10[\mathrm{~mm}]}{10000[P L S]}\) \(=0.001\) [\(\mathrm{mm} / \mathrm{PLS}\)]
Positioning control is executed at the commanded speed.
(2) Electronic gear 2:1 (electronic gear setting = 0.5)

Travel value per PULSE \(=\frac{\text { Travel value per motor revolution }}{\text { PULSES per motor revolution }}=\frac{5[\mathrm{~mm}]}{10000[P L S]}\)
\(=0.0005\) [\(\mathrm{mm} / \mathrm{PLS}\)]
Positioning control is executed faster than the commanded speed.
(3) Electronic gear 1:2 (electronic gear setting = 2)

Travel value per PULSE \(=\frac{\text { Travel value per motor revolution }}{\text { PULSES per motor revolution }}=\frac{20[\mathrm{~mm}]}{10000[P L S]}\)
\(=0.002[\mathrm{~mm} / \mathrm{PLS}]\)
Positioning control is executed slower than the commanded speed.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

The relationship between the commanded speed (positioning speed set in the servo program) and actual speed (actual positioning speed) is shown below for different electronic gear settings.
- if electronic gear setting \(=1\), commanded speed \(=\) actual speed
- if electronic gear setting <1, commanded speed < actual speed
- if electronic gear setting \(>1\), commanded speed \(>\) actual speed

The speed limit value, acceleration time, and deceleration time are data from the designated parameter block.
Fig.8.2 Relationship Between Commanded Speed and Actual Speed

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.6 Absolute Positioning System}

The absolute positioning system can be used for positioning control when using an absolute-position-compatible servomotor and MR- \(\square\)-B.
Zeroing is not necessary using the absolute positioning system because after the machine position is initially established at system startup, the absolute position is sensed each time the power is turned on.
The machine position is established using a zeroing initiated from the sequence program or a peripheral device.
(1) Absolute position system startup procedure

The system startup procedure is shown below.

(2) In the absolute positioning system, the absolute position may be lost under the following conditions:
Re-establish the absolute position using zeroing or by aligning the machine position and using current value change.
(a) After removing or replacing the battery unit.
(b) On occurrence of a servo battery error (detected at servo amplifier power on).
(c) After the mechanical system is disturbed by a shock.
(3) Power of allowed traveling points can be monitored in the system setting mode of a peripheral device, and the current value history can be monitored in the monitor mode.
(For details on monitoring power of allowed traveling points and the current value history, refer to the operating manual for the peripheral device being used.)
(a) Current value history monitor
1) Month/day/hour/minute

The time when a zeroing is completed or the servo amplifier power is turned ON or OFF is indicated.
In order to display the time correctly, it is necessary to first set the clock data at the programmable controller side, then switch ON M9028 (clock data read request) from the sequence program.
2) Encoder current value

When using MR-H-BN (version BCD-B13W000-B2 or later), MR-J2S-B(without restriction) or MR-J2-B (version BCD-B20W200-A1 or later), the multiple revolution data and within-one-revolution data read from the encoder is displayed.
(Note): For the encoder current value in the home position data area, the encoder current value when the motor is within the in-position range after completion of a zeroing is displayed (not the encoder value at the home position).
3) Servo command value

The command value issued to the servo amplifier is displayed.
4) Monitor current value

The current value controlled within the servo system CPU is displayed.
(Note) : A value close to the feed current value is displayed, but, since the monitor current value and feed current value are different data, the display of different values does not indicate an error.
5) Alarms

When an error involving resetting of the current value occurs while the servo amplifier power is ON, an error code is displayed. For details of the error, refer to the error contents area (related error list) at the bottom of the screen.

\footnotetext{
CAUTION
After removing or replacing the battery unit, correctly install the new unit and establish the absolute position.
\. After a servo battery error occurs, eliminate the cause of the error and ensure operation is safe before establishing the absolute position.
\$. After the mechanical system is disturbed by a shock, make the necessary checks and repairs, and ensure operation is safe before establishing the absolute position.
}

\section*{POINTS}
(1) The address setting range for absolute position system is -2147483648 to 2147483647.
It is not possible to restore position commands that exceed this limit, or current values, after a power interruption.
When performing an infinite feed operation, solve this problem by setting the units to degrees.
(2) Even when the current value address is changed by a current value change instruction, the restored data for the current value after a power interruption is the value based on the status prior to execution of the current value change instruction.
(3) When zeroing has not been completed, restoration of the current value after a power interruption is not possible.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.7 Skip Function}

Based on an external input, the skip function halts the current positioning and executes the next positioning control.
The servo system CPU can run the skip function according to the external STOP signal and the sequence program.
(1) The procedure for using the skip function based on the external STOP signal and the sequence program is shown below.

(2) Operation timing

The operation timing of the skip function is shown in the diagram below.

PLC ready(M2000)

All axes servo start command (M2042)
External STOP signal
Turn ON STOP input valid/invalid

signal (M3209+20n) at start of positioning.

\subsection*{8.8 Teaching Function}

The teaching function allows the operator to teach the servo system CPU when the target position (address) is unknown or to align with an object.
(1) Teaching methods

Two teaching methods are available: "address teaching" and "program teaching."
(a) Address teaching

Writes the current value to the designated program address.
The program must be created before the address teaching method can be used.
(b) Program teaching

Writes the current value to addresses while the program is being created.
(2) For details about teaching, see the A30TU-E Teaching Unit Operating Manual (IB-67277).

\subsection*{8.9 High-Speed Reading of Designated Data}

This function stores the designated positioning data in the designated device (\(D\), W) with the signal from an input module mounted on the motion slot of the motion base as the trigger.
It can be set in the system setting of a peripheral device software package.
(1) Positioning data that can be set
\begin{tabular}{|c|c|c|c|}
\hline Set Data & Number of Words & Unit & Remarks \\
\hline Position command (feed current value) & 2 & \(10^{-1} \mu \mathrm{~m} \cdot 10^{-5} \mathrm{inch} \cdot 10^{-5}\) degree \(\cdot \mathrm{PLS}\) & \\
\hline Real current value & 2 & \(10^{-1} \mu \mathrm{~m} \cdot 10^{-5} \mathrm{inch} \cdot 10^{-5}\) degree \(\cdot \mathrm{PLS}\) & \\
\hline Position droop (deviation counter value) & 2 & PLS & \\
\hline M-codes & 1 & - & \\
\hline Torque limit value & 1 & \% & \\
\hline Motor current & 1 & \% & \\
\hline Motor rpm & 2 & r/min & \\
\hline Servo command value & 2 & PLS & \\
\hline Virtual servo motor feed current value & 2 & PLS & \\
\hline Synchronous encoder current value & 2 & PLS & \multirow{7}{*}{Valid in SV22 virtual mode only} \\
\hline Virtual servo M-code & 1 & - & \\
\hline Current value after main shaft differential gear & 2 & PLS & \\
\hline Current value within one revolution of cam axis & 2 & PLS & \\
\hline Executed cam No. & 1 & - & \\
\hline Executed stroke amount & 2 & \(10^{-1} \mu \mathrm{~m} \cdot 10^{-5} \mathrm{inch} \bullet\) PLS & \\
\hline Any address (fixed to 4 bytes) & 2 & - & \\
\hline
\end{tabular}
(2) Modules and signals used
\begin{tabular}{|c|c|c|c|}
\hline Input Module & Signal & Reading Timing & Number of Points Settable \\
\hline A273EX & TRA & \multirow{3}{*}{0.8 ms} & 3 \\
\hline A172SENC & TRA & & 1 \\
\hline Sequencer input module & X device & & 8 \\
\hline
\end{tabular}
(Note): Only one PLC input module can be used.

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}

\subsection*{8.10 Servo Program Cancel/Start Function}

This is a function for stopping a servo program being executed by means of a deceleration stop caused turning the cancel signal ON. When used in combination with "start" (selectable item), this function also allows a designated servo program to be automatically started after a deceleration start.

\section*{[Control details]}
(1) When the cancel signal is turned ON during execution of a program for which the cancel function has been designated, the positioning processing being executed is suspended, and a deceleration stop is executed.
(2) If "start" has been designated in conjunction with "cancel", after the stop has been executed as described above, the designated servo program is started.

\section*{[Data setting]}
(1) Cancel signal device

The devices that can be used as cancel signal devices are indicated below. X, Y, M, TC, TT, CC, CT, B, F
(2) Start (selectable item) setting method

Set by indirect designation (1 word) by using a constant (K) or D, W devices.
[Notes]
(1) Cannot be used with the zeroing instruction (ZERO) or simultaneous start instruction (START).
For details on whether other instructions can be used or not, refer to the servo instruction list (6.2(2)).
(2) If the axes used with a servo program designated by "start" are already in operation and the program cannot be executed, the axes decelerate to a stop and minor error "101" occurs.

\section*{[Operation timing]}

\section*{8. AUXILIARY AND APPLIED FUNCTIONS}
[Program example]
A program example is shown bellow.

\subsection*{8.11 Enhanced Current Value Control}

The following functions have been added to provide enhanced current value control when the ABS encode is used.
(1) Enhanced functions
(a) Function for checking the validity of an encoder during operation
- Checks whether encoder's variance in a 3.5 ms time interval is within 180 degrees at the motor axis. (An error is indicated when the variance is not within 180 degrees.)
- Checks whether encoder data matches feed-back positions managed by the servo amplifier. (An error is indicated when the data does not match the feed-back positions.)
(b) Current value log monitor for checking the following values with peripheral devices
- Encoder current value, servo commanded value, and monitor current value at power-on sequence
- Encoder current value, servo commanded value, and monitor current value at power-off sequence
- Encoder current value, servo commanded value, and monitor current value at zeroing
(c) If an allowable travel value is set at power-off sequence, whether encoder data has changed exceeding the setting range at power-off sequence can be checked at servo amplifier power-on sequence. (An error is indicated when the encoder data has exceeded the setting range.)
(2) Restrictions on the combinations of positioning operating systems and positioning software packages
There are the following restrictions depending on whether the permissible travel value during power-off has been set or not.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Positioning OS Ver.} & Positioning Software Package Ver. & \multirow[t]{2}{*}{Restrictions} \\
\hline & PC/AT compatible & \\
\hline \multirow[b]{2}{*}{V or later} & R or later (Note-1) & There are no restrictions. (When the old version of the positioning OS was removed and a new version installed, always perform a zeroing.) \\
\hline & Q or earlier (Note-2) & \begin{tabular}{l}
- Current value log monitor is disabled. \\
- Since the permissible travel value during power-off cannot be set, a minor error (error code: 901) occurs at power-on of the servo amplifier. (Note-3) (When the old version of the positioning OS was removed and a new version installed, always perform a zeroing.)
\end{tabular} \\
\hline \multirow[b]{2}{*}{U or earlier} & R or later (Note-1) & \multirow[b]{2}{*}{All enhanced function items are unusable.} \\
\hline & Q or earlier (Note-2) & \\
\hline
\end{tabular}
(Note-1): Permissible travel value during power-off can be set.
(Note-2): Permissible travel value during power-off cannot be set.
(Note-3): Since the permissible travel value during power-off cannot be set on the old version of the positioning software package, a minor error is displayed but it has no operational problem.
(3) Restrictions on the servo amplifiers

When the positioning operating system version V or later is used, there are the following restrictions on the combinations of the servo amplifiers and positioning software packages.
\begin{tabular}{|l|c|l|}
\hline \multirow{2}{*}{ Servo Amplifier } & \begin{tabular}{c}
Positioning Software \\
Package Ver.
\end{tabular} & \multirow{2}{*}{ Restrictions }
\end{tabular}

\section*{APPENDICES}

\section*{APPENDIX1 SCPU ERROR CODE LIST}

If an error occurs when the PLC is switched to the RUN status or is in the RUN status, the error indication and error code (including the step number) are stored in a special register by the self-diagnosis function. When an error occurs, refer to Table 1.1 for its cause and the corrective action to take.
Eliminate the cause of the error by taking the appropriate corrective action. Error codes can be read at a peripheral device; for details on the relevant operation, see the Operating Manual for the peripheral device.
!
\. When an error occurs, check the points stated in this manual and reset the error.

\subsection*{1.1 SCPU Error Code List}

The list presented below gives the error numbers, and the error contents, causes, and corrective actions for each error message.

Table 1.1 Error Code List
\begin{tabular}{|c|c|c|c|c|}
\hline Error Message (When an A273UHCPU (8/32 Axes Specification) Is Used) & Contents of Special Register D9008 (BIN Value) & CPU Status & Error Contents and Cause & Corrective Action \\
\hline \begin{tabular}{l}
"INSTRCT.CODE ERR" \\
(When an instruction is executed.)
\end{tabular} & 10 & Stopped & \begin{tabular}{l}
An instruction code that cannot be decoded has been included in the program. \\
(1) A ROM which includes undecodable instruction codes has been installed. \\
(2) The memory contents have changed for some reason and now include an undecodable instruction code.
\end{tabular} & \begin{tabular}{l}
(1) Read the error step with a peripheral device, and correct the program at that step. \\
(2) If the ROM is the problem, either rewrite its contents or replace it with a ROM into which the correct contents have been written.
\end{tabular} \\
\hline "PARAMETER ERROR"
\[
\left(\begin{array}{l}
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 11 & Stopped & The parameter data in the CPU's memory has been changed due to noise or incorrect installation of the memory. & \begin{tabular}{l}
(1) Check the installation of the memory and install it correctly. \\
(2) Read the parameter data of the CPU memory at a peripheral device, check the data, correct it, and write the corrected data back into the memory.
\end{tabular} \\
\hline "MISSING END INS."
\[
\left(\begin{array}{l}
\text { When M9056 or M9057 is ON. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 12 & Stopped & \begin{tabular}{l}
(1) There is no END (FEND) instruction in the program. \\
(2) When a subprogram is set in the parameters, there is no END instruction in the subprogram.
\end{tabular} & (1) Write an END instruction at the end of the program. \\
\hline "CAN'T EXECUTE (P)"
\[
\left.\begin{array}{l}
\text { When a CJ/SCJ/JMP/CALL(P)/ } \\
\text { FOR-NEXT instruction is executed. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 13 & Stopped & \begin{tabular}{l}
(1) The jump destination designated with a CJ/SCJ/CALL/CALLP/JMP instruction does not exist, or more than one exists. \\
(2) There is a CHG instruction but no subprogram is set. \\
(3) Although there is no CALL instruction, there is a RET instruction in the program and is has been executed. \\
(4) A CJ/SCJ/CALL/CALLP/JMP instruction whose jump destination is at or beyond the END instruction has been executed. \\
(5) The number of FOR instructions does not match the number of NEXT instructions. \\
(6) A JMP instruction has been included between a FOR and NEXT command, exiting the FOR - NEXT sequence. \\
(7) The subroutine has been exited by execution of a JMP instruction before execution of a RET instruction. \\
(8) Execution of a JMP instruction has caused a jump into a step in a FOR - NEXT range, or into a subroutine.
\end{tabular} & (1) Read the error step with a peripheral device, and correct the program at that step.(Correct, for example, by inserting a jump destination, or making sure there is only one jump destination.) \\
\hline
\end{tabular}

Table 1.1 Error Code List (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Error Message & Contents of Special Register D9008 (BIN Value) & CPU Status & Error Contents and Cause & Corrective Action \\
\hline "CHK FORMAT ERR."
\[
\left[\begin{array}{l}
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right]
\] & 14 & Stopped & \begin{tabular}{l}
(1) An instruction other than an LDX, LDIX, ANDX, or ANIX instruction (including NOP) has been included in the same ladder block as a CHK instruction. \\
(2) More than one CHK instruction exists. \\
(3) The number of contacts in a CHK instruction ladder block exceeds 150 . \\
(4) The device number of an X device in a CHK instruction ladder block exceeds X1FFE. \\
(5) The following ladder block \\
has not been inserted before the CHK instruction ladder block. \\
(6) The D1 device (number) of a CHK D1 D2 instruction is not the same as the device (number) of the contact before the CJロ instruction. \\
(7) The pointer P254 is not appended at the head of a CHK instruction ladder block.
\end{tabular} & \begin{tabular}{l}
(1) Check if any of items (1) to (6) in the column to the left apply to the program with the CHK instruction ladder block, correct any problem in the program with a peripheral device, then restart program operation. \\
(2) This error code is only valid when the I/O control method used is the direct method.
\end{tabular} \\
\hline "CAN'T EXECUTE (I)"
\[
\left.\begin{array}{l}
\text { When an interruption occurs. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 15 & Stopped & \begin{tabular}{l}
(1) An interrupt module is used but there is no number for the corresponding interrupt pointer I in the program. Or, more than one exists. \\
(2) There is no IRET instruction in the interrupt program. \\
(3) There is an IRET instruction other than in the interrupt program.
\end{tabular} & \begin{tabular}{l}
(1) Check the whether or not an interrupt program corresponding to the interrupt module exists and either create an interrupt program or eliminate the duplicated I number. \\
(2) Check if there is an IRET instruction in the interrupt program: if there is not, insert one. \\
(3) Check if there is an IRET instruction other than in the interrupt program: if there is, delete it.
\end{tabular} \\
\hline \begin{tabular}{l}
"CASSETTE ERROR" \\
(On switching on the power or resetting.)
\end{tabular} & 16 & Stopped & No memory cassette is installed. & Install a memory cassette and reset. \\
\hline "RAM ERROR"
\[
\left[\begin{array}{l}
\text { On switching on the power or resetting. } \\
\text { When M9084 is turned ON in the STOP } \\
\text { status. }
\end{array}\right]
\] & 20 & Stopped & (1) On checking if data can be read from and written to the CPU data memory area normally, it is determined that one or both are not possible. & There is a hardware fault. Contact your system service, agent, or office, and explain the problem. \\
\hline \begin{tabular}{l}
"OPE.CIRCUIT ERR." \\
(On switching on the power or resetting.)
\end{tabular} & 21 & Stopped & (1) The operation circuit that executes sequence processing in the CPU does not operate normally. & \\
\hline \begin{tabular}{l}
"WDT ERROR" \\
(At any time)
\end{tabular} & 22 & Stopped & \begin{tabular}{l}
The scan time has exceeded the watchdog error monitor time. \\
(1) The user program scan time has been exceeded due to the conditions. \\
(2) A momentary power interruption has occurred during scanning, extending the scan time.
\end{tabular} & \begin{tabular}{l}
(1) Calculate and check the scan time for the user program and shorten the scan time, e.g. by using a CJ instruction. \\
(2) Monitor the contents of special register D9005 with a peripheral device. If the contents are other than " 0 " the power supply voltage is unstable: in this case check the power supply and reduce voltage fluctuation.
\end{tabular} \\
\hline \begin{tabular}{l}
"END NOT EXECUTE" \\
(When END processing is executed.)"
\end{tabular} & 24 & Stopped & \begin{tabular}{l}
(1) When the END instruction is executed it is read as another instruction code, e.g. due to noise. \\
(2) The END instruction has been changed to another instruction code somehow.
\end{tabular} & \begin{tabular}{l}
(1) Reset and establish the RUN status again.If the same error is displayed again, the cause is a CPU hardware error. \\
Contact your system service, agent, or office, and explain the problem.
\end{tabular} \\
\hline \begin{tabular}{l}
"WDT ERROR" \\
(At any time)
\end{tabular} & 25 & Stopped & A loop has been established for execution of the sequence program, due for example to a CJ instruction, and the END instruction cannot be executed. & Check if any program will be run in an endless loop: if there is such a program, modify the program. \\
\hline
\end{tabular}

Table 1.1 CPU Error Code List (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Error Message & Contents of Special Register D9008 (BIN Value) & CPU Status & Error Contents and Cause & Corrective Action \\
\hline "UNIT VERIFY ERR."
\[
\left[\begin{array}{l}
\text { When an END instruction is executed. } \\
{\left[\begin{array}{l}
\text { However, no check is performed when } \\
\text { M9084 or M9094 is ON. }
\end{array}\right]}
\end{array}\right]
\] & 31 & Stopped (RUN) & \begin{tabular}{l}
The I/O information does not match a loaded module when the power is switched ON. \\
(1) An I/O module (this includes special function modules) is loose, or has become detached, during operation. Or, a completely different module has been loaded.
\end{tabular} & \begin{tabular}{l}
(1) The bit in special registers D9116 to D9123 that corresponds to the module for which the verification error occurred will be set to "1": check for the module whose bit is set to "1" by monitoring these registers with a peripheral device and replace that module. \\
(2) If the current arrangement of loaded modules is acceptable, reset with the reset switch.
\end{tabular} \\
\hline "FUSE BREAK OFF"
\[
\left[\begin{array}{l}
\text { When an END instruction is executed. } \\
{\left[\begin{array}{l}
\text { However, no check is performed when } \\
\text { M9084 or M9094 ON. }
\end{array}\right]}
\end{array}\right]
\] & 32 & RUN
(Stopped) & There is an output module with a blown fuse. & \begin{tabular}{l}
(1) Check the blown fuse indicator LEDs of the output modules and replace the fuse of the module whose indicator LED is lit. \\
(2) Modules with blown fuses can also be detected by using a peripheral device. \\
The bit in special registers D9100 to D9107 that corresponds a module whose fuse has blown will be set to "1": monitor these registers to check.
\end{tabular} \\
\hline "CONTROL-BUS ERR."
\[
\left.\begin{array}{l}
\text { When FROM, TO instruction are executed. } \\
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 40 & Stopped & \begin{tabular}{l}
FROM, TO instructions cannot be executed. \\
(1) Fault in the control bus to the special function module.
\end{tabular} & \begin{tabular}{l}
(1) There is a hardware fault of the special function module, CPU module, or base unit: replace each module/unit to find the defective one. \\
Contact your system service, agent, or office, and explain the problem with the defective module/unit.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { "SP.UNIT DOWN" } \\
& \left(\begin{array}{c}
\text { When FROM, TO instruction are executed. } \\
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\end{aligned}
\] & 41 & Stopped & \begin{tabular}{l}
On execution of a FROM, TO instruction, a special function module was accessed but no response was received. \\
(1) The accessed special function module is faulty.
\end{tabular} & There is a hardware fault in the accessed special function module: contact your system service, agent, or office, and explain the problem. \\
\hline "LINK UNIT ERROR"
\[
\left(\begin{array}{l}
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 42 & Stopped & (1) A data link module for use with MELSECNET has been loaded at the master station. & \begin{tabular}{l}
(1) Remove the data link module for MELSECNET from the master station. \\
After making this correction, reset and start operation from the initial status.
\end{tabular} \\
\hline \begin{tabular}{l}
"I/O INT.ERROR" \\
(When an interruption occurs.)
\end{tabular} & 43 & Stopped & An interruption has occurred although there is no interrupt module. & (1) There is a hardware fault in one of the modules: replace each module in turn to determine which one is defective. Contact your system service, agent, or office, and explain the problem with the defective module. \\
\hline "SP.UNIT LAY.ERR."
\[
\left(\begin{array}{l}
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 44 & Stopped & \begin{tabular}{l}
(1) Three or more computer link modules have been installed for one CPU module. \\
(2) Two or more data link modules for MELSECNET have been installed. \\
(3) Two or more interrupt modules have been installed. \\
(4) In the parameter settings made at a peripheral device, an allocation for a special function module has been made where there is in fact an I/O module, or vice versa.
\end{tabular} & \begin{tabular}{l}
(1) Do not install more than two computer link modules. \\
(2) Do not install more than one data link module for MELSECNET. \\
(3) Install only one interrupt module. \\
(4) Re-set the I/O allocations in the parameter settings made at the peripheral device so that they agree with the loaded modules.
\end{tabular} \\
\hline
\end{tabular}

Table 1.1 CPU Error Code List (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Error Message & Contents of Special Register D9008 (BIN Value) & CPU Status & Error Contents and Cause & Corrective Action \\
\hline \begin{tabular}{l}
"SP.UNIT ERROR" \\
(When a FROM, TO instruction is executed)
\end{tabular} & 46 & Stopped (RUN) & (1) A location where there is no special function module has been accessed (when the FROM, TO instruction was executed). & (1) Read the error step using a peripheral device, check the contents of the FROM, TO instruction at that step, and correct it using the peripheral device. \\
\hline "LINK PARA.ERROR"
\[
\left(\begin{array}{l}
\text { On switching on the power or resetting. } \\
\text { On switching from } \\
\left\{\begin{array}{l}
\text { STOP } \\
\text { PAUSE }
\end{array}\right\} \text { to }\left\{\begin{array}{l}
\text { RUN } \\
\text { STEP RUN }
\end{array}\right\}
\end{array}\right)
\] & 47 & RUN & \begin{tabular}{l}
(1) The data written to the link parameter area when link range settings are made by parameter setting at a peripheral device differ for some reason from the parameter data read by the CPU. \\
(2) The setting for the total number of slave stations is "0".
\end{tabular} & \begin{tabular}{l}
(1) Write the parameters again and check. \\
(2) If the error is displayed again, there is a hardware fault. Contact your nearest Mitsubishi service center, agent, or office, and explain the problem.
\end{tabular} \\
\hline \begin{tabular}{l}
"OPERATION ERROR" \\
(When a command is executed)
\end{tabular} & 50 & \[
\begin{gathered}
\text { RUN } \\
\text { (Stopped) }
\end{gathered}
\] & \begin{tabular}{l}
(1) The result of BCD conversion is outside the stipulated range (max. 9999 or 99999999). \\
(2) A setting exceeding the stipulated device range has been made and operation is therefore impossible. \\
(3) A file register has been used in the program without having made a file register capacity setting.
\end{tabular} & (1) Read the error step with a peripheral device, and correct the program at that step. (Check the device setting range, BCD conversion value, etc.) \\
\hline "BATTERY ERROR"
\[
\left[\begin{array}{l}
\text { At any time } \\
{\left[\begin{array}{l}
\text { However, no check is performed when } \\
\text { M9084 is ON. }
\end{array}\right]}
\end{array}\right]
\] & 70 & RUN & \begin{tabular}{l}
(1) The battery voltage has fallen below the stipulated value. \\
(2) The battery's lead connector has not been installed.
\end{tabular} & \begin{tabular}{l}
(1) Replace the battery. \\
(2) If the battery is used to back up the RAM memory or to retain memory contents during momentary power interruptions, install a lead connector.
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX2 ERROR CODES STORED BY THE PCPU}

The errors that are detected at the PCPU are servo program setting errors and positioning errors.
(1) Servo program setting errors Servo program setting errors are errors in the positioning data set in the servo program and are checked for when a servo program is started.
They are errors that occur when the positioning data is designated indirectly. When a servo program setting error occurs, the following happens:
- The servo program setting error flag (M9079) comes ON.
- The program number of the program in which the error occurred is stored in the error program No. register (D9189).
- The error code is stored in the error item information register (D9190).
(2) Positioning error
(a) Positioning errors are errors that occur when positioning starts or during positioning: they are classified into minor errors, major errors, and servo errors.
1) Minor errors. \(\qquad\) These are errors generated by sequence programs or servo programs; they are assigned error codes 1 to 999.
The cause of minor errors can be eliminated by checking the error code and correcting the sequence program or servo program.
2) Major error...............These are errors generated by external input signals or control commands from the SCPU; they are assigned error codes 1000 to 1999.
When a major error occurs, check the error code and eliminate the error cause in the external input signal status or sequence program.
3) Servo error Th These are errors detected by the servo amplifier; they are assigned error codes 2000 to 2999. When a servo error occurs, check the error code and eliminate the error cause at the servo side.
(b) When an error occurs, the error detection signal for the relevant axis comes ON , and the error code is stored in the minor error code, major error code, or servo error code register.

Table 2.1 Error Code Registers, Error Detection Flags
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Error Category} & \multicolumn{16}{|c|}{Error Code Storage Register} & \multirow[b]{2}{*}{Error Detection Signal} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & Axis 5 & Axis 6 & Axis 7 & Axis 8 & Axis 9 & Axis 10 & Axis 11 & Axis 12 & Axis 13 & Axis 14 & Axis 15 & Axis 16 & \\
\hline Minor error & D6 & D26 & D46 & D66 & D86 & D106 & D126 & D146 & D166 & D186 & D206 & D226 & D246 & D266 & D286 & D306 & \\
\hline Major error & D7 & D27 & D47 & D67 & D87 & D107 & D127 & D147 & D167 & D187 & D207 & D227 & D247 & D267 & D287 & D307 & \\
\hline Servo error & D8 & D28 & D48 & D68 & D88 & D108 & D128 & D148 & D168 & D188 & D208 & D228 & D248 & D268 & D288 & D308 & M2408+20n \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Device & \multicolumn{16}{|c|}{Error Code Storage Register} & \multirow[t]{2}{*}{Error Detection Signal} \\
\hline Error Category & Axis 17 & Axis 18 & Axis 19 & Axis 20 & Axis 21 & Axis 22 & Axis 23 & \begin{tabular}{l}
Axis \\
24
\end{tabular} & Axis 25 & Axis 26 & Axis 27 & Axis 28 & Axis 29 & \begin{tabular}{l}
Axis \\
30
\end{tabular} & Axis 31 & Axis 32 & \\
\hline Minor error & D326 & D346 & D366 & D386 & D406 & D426 & D446 & D466 & D486 & D506 & D526 & D546 & D566 & D586 & D606 & D626 & \\
\hline Major error & D327 & D347 & D367 & D387 & D407 & D427 & D447 & D467 & D487 & D507 & D527 & D547 & D567 & D587 & D607 & D627 & \\
\hline Servo error & D328 & D348 & D368 & D388 & D408 & D428 & D448 & D468 & D488 & D508 & D528 & D548 & D568 & D588 & D608 & D628 & M2408+20n \\
\hline
\end{tabular}
(c) If another error occurs after an error code has been stored, the existing error code is overwritten, deleting it. However, it is possible to check the history of error occurrence by using a peripheral device started up with the GSV13PE/GSV22PE software.
(d) Error detection flags and error codes are latched until the error code reset signal (M3207+20n) or servo error reset signal (M3208+20n) comes ON.

\section*{POINTS}
(1) When some servo errors occur, the same error code will be stored again even if the servo error reset signal (M3208+20n: ON) is issued.
(2) When a servo error occurs, reset the servo error after first eliminating the error cause at the servo side.

\subsection*{2.1 Servo Program Setting Errors (Stored in D9190)}

The error codes, error contents, and corrective actions for servo program setting errors are shown in Table 2.2. The " \(\boldsymbol{*}\) " in error codes marked with an asterisk indicates the axis number (1 to 32).

Table 2.2 Servo Program Setting Error List
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Error Code Stored in D9190 & Error Name & \multicolumn{3}{|c|}{Error Contents} & Error Processing & Corrective Action \\
\hline 1 & Parameter Block number Setting error & \multicolumn{3}{|l|}{The designated parameter block number is outside the range 1 to 64 .} & The servo program is executed with the parameter block number set to the default value of "1". & Designate the parameter block number in the range 1 to 64 . \\
\hline \multirow[t]{2}{*}{n03*} & \multirow[t]{2}{*}{Address/travel value setting error (Excluding speed control and speed/position switching control)} & \multicolumn{3}{|l|}{(1) An address outside the designated range is set when executing absolute positioning control.} & \multirow[t]{2}{*}{\begin{tabular}{l}
(1) Axis motion does not start. (When executing interpolation control, none of the interpolation control axis start.) \\
(2) If the error is detected during speed switching control or constant-speed control, a deceleration stop is executed. \\
(3) When multiple servo programs are to be executed simultaneously, if an error occurs in one servo program none of the programs are executed.
\end{tabular}} & (1) If the control unit is degrees, set the address in the range 0 to 35999999 . \\
\hline & & \multicolumn{3}{|l|}{(2) The travel value is set to -2147483648 (H80000000) when executing incremental positioning control.} & & (2) Set the travel value in the range 0 to \(\pm\left(2^{31}-1\right)\). \\
\hline \multirow{7}{*}{4} & \multirow{7}{*}{Commanded speed error} & \multicolumn{3}{|l|}{(1) The commanded speed is set outside the range of 1 to the speed limit value.} & \multirow[t]{7}{*}{\begin{tabular}{l}
(1) The axis does not start if the commanded speed is set at " 0 " or less. \\
(2) If the set commanded speed exceeds the speed limit value, control is executed at the speed limit value.
\end{tabular}} & \multirow[t]{7}{*}{(1) Set the commanded speed in the range from 1 to the speed limit value.} \\
\hline & & \multicolumn{3}{|l|}{(2) The designation for the commanded speed is outside the applicable range.} & & \\
\hline & & Unite & \multicolumn{2}{|l|}{Address Setting Range} & & \\
\hline & & mm & 1 to 600000000 & \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) & & \\
\hline & & inch & 1 to 600000000 & \(\times 10^{-3} \mathrm{inch} / \mathrm{min}\) & & \\
\hline & & degree & 1 to 600000000 & \(\times 10^{-3}\) degree \(/ \mathrm{min}\) & & \\
\hline & & PULSE & 1 to 1000000 & PLS/s & & \\
\hline 5 & Dwell time setting error & \multicolumn{3}{|l|}{The dwell time is set outside the range 0 to 5000.} & Control is executed using the default value of "0". & Set the dwell time in the range from 0 to 5000. \\
\hline 6 & M-code setting error & \multicolumn{3}{|l|}{The M-code is set outside the range 0 to 255.} & Control is executed using the default value of "0". & Set the M -code in the range from 0 to 255 . \\
\hline 7 & Torque limit value setting error & \multicolumn{3}{|l|}{The torque limit value is set outside the range 1 to 500 .} & Control is executed using the torque limit value set in the designated parameter block. & Set the torque limit value in the range from 1 to 500 . \\
\hline \multirow{4}{*}{n08*} & \multirow[t]{4}{*}{Auxiliary point setting error (when executing circular interpolation by designating an auxiliary point)} & \multicolumn{3}{|l|}{(1) An address outside the designated range is set when executing absolute positioning control.} & \multirow[t]{4}{*}{Positioning control does not start.} & \multirow[t]{3}{*}{(1) If the control unit is degrees, set the address in the range 0 to 35999999.} \\
\hline & & Unite & \multicolumn{2}{|l|}{Address Setting Range} & & \\
\hline & & degree & 1 to 35999999 & \(\times 10^{-5}\) degree & & \\
\hline & & \multicolumn{3}{|l|}{(2) The auxiliary point address is set to -2147483648 (H80000000) when executing incremental positioning control.} & & (2) Set the travel value in the range 0 to \(\pm 2147483647\). \\
\hline \multirow{6}{*}{n09*} & \multirow{6}{*}{Radius setting error (when executing circular interpolation by designating a radius)} & \multicolumn{3}{|l|}{(1) An address outside the applicable range is set when executing absolute positioning control.} & \multirow[t]{6}{*}{Positioning control does not start.} & \multirow[t]{3}{*}{(1) If the control unit is degrees, set the address in the range 0 to 35999999 .} \\
\hline & & Unite & Address S & tting Range & & \\
\hline & & degree & 1 to 35999999 & \(\times 10^{-5}\) degree & & \\
\hline & & \multicolumn{3}{|l|}{(2) The radius is set to -2147483648 (H80000000) when executing incremental positioning control.} & & (2) Set the travel value in the range 0 to \(\pm 2147483647\). \\
\hline & & \multicolumn{3}{|l|}{(3) The start point is also the end point.} & & (3) Set the start and end points so that they are not equal to each another. \\
\hline & & \multicolumn{3}{|l|}{(4) The distance between the start and end points is greater than the radius.} & & (4)Change the relationship between the start-to-end point distance (L) and the radius (R) so that it conforms with the following equation:
\[
\frac{L}{2 R} \leq 1
\] \\
\hline
\end{tabular}

Table 2.2 Servo Program Setting Error List (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Error Code Stored in D9190 & Error Name & \multicolumn{3}{|c|}{Error Contents} & Error Processing & Corrective Action \\
\hline \multirow{4}{*}{n10*} & \multirow{4}{*}{Center point setting error (when executing circular interpolation by designating a center point)} & \multicolumn{3}{|l|}{(1) An address outside the applicable range is set when executing absolute positioning control.} & \multirow[t]{4}{*}{Positioning control does not start.} & (1) If the control unit is degrees, set the address in the range 0 to 35999999 . \\
\hline & & Unite & Addres & ng Range & & \\
\hline & & ee & 35999999 & \(\times 10^{-5}\) degree & & \\
\hline & & \multicolumn{3}{|l|}{(2) The center point is set to -2147483648 (H80000000) when executing incremental positioning control.} & & (2) Set the travel value in the range 0 to \(\pm 2147483647\). \\
\hline 11 & Interpolation control unit setting error & \multicolumn{3}{|l|}{The interpolation control unit is set outside the range 0 to 3 .} & Control is executed at the default value of "3". & Set the interpolation control unit in the range 0 to 3 . \\
\hline 12 & Speed limit value setting error & \multicolumn{3}{|l|}{The speed limit value is set outside the applicable range.} & Control is executed at the default value of 200000 PLS/s. & Set the speed limit value in the specified range. \\
\hline \multirow[b]{2}{*}{13} & Acceleration time setting error & \multicolumn{3}{|l|}{The acceleration time is set to "0".} & \multirow[t]{4}{*}{Control is executed at the default value of 1000.} & Set the acceleration time in the range 1 to 65535. \\
\hline & FIN acceleration/ deceleration setting error & \multicolumn{3}{|l|}{FIN acceleration/deceleration setting is other than 1 to 5000 .} & & Set FIN acceleration/deceleration within range 1 to 5000 . \\
\hline 14 & Deceleration time setting error & \multicolumn{3}{|l|}{The deceleration time is set to "0".} & & Set the deceleration time in the range 1 to 65535 . \\
\hline 15 & Rapid stop deceleration time setting error & \multicolumn{3}{|l|}{The rapid stop deceleration time is set to "0".} & & Set the rapid stop deceleration time in the range 1 to 65535 . \\
\hline 16 & Torque limit value setting error & \multicolumn{3}{|l|}{The torque limit value is set outside the range 1 to 500 .} & Control is executed at the default value of \(300 \%\). & Set the torque limit value in the range 1 to 500 . \\
\hline \multirow{6}{*}{17} & \multirow{6}{*}{Allowable error range for circular interpolation setting error} & \multicolumn{3}{|l|}{The allowable error range for circular interpolation is set outside the applicable range.} & \multirow[t]{6}{*}{Control is executed at the default value (100PLS).} & \multirow[t]{6}{*}{Set the allowable error range for circular interpolation in the applicable range.} \\
\hline & & Unite & \multicolumn{2}{|l|}{Address Setting Range} & & \\
\hline & & mm & \multirow{4}{*}{o 100000} & \(\times 10^{-1} \mu \mathrm{~m}\) & & \\
\hline & & inch & & \(\times 10^{-5} \mathrm{inch}\) & & \\
\hline & & degree & & \(\times 10^{-5}\) degree & & \\
\hline & & PULSE & & PLS & & \\
\hline 18 & Repeat count error & \multicolumn{3}{|l|}{The repeat count is set outside the range 1 to 32767.} & Control is executed with the repeat count set to "1". & Set the repeat count in the range 1 to 32767. \\
\hline \multirow{3}{*}{19} & \multirow{3}{*}{START instruction setting error} & \multicolumn{3}{|l|}{(1) The servo program designated by the START instruction does not exist.} & \multirow[t]{3}{*}{Positioning control does not start.} & (1) Create a servo program designated by the START instruction. \\
\hline & & \multicolumn{3}{|l|}{(2) There is a START instruction in the designated servo program.} & & (2) Delete the servo program containing the START instruction. \\
\hline & & \multicolumn{3}{|l|}{(3) More than one axis has been designated for the started servo program.} & & (3) Do not designate more than one axis. \\
\hline 20 & Point setting error & \multicolumn{3}{|l|}{No point has been designated in the instruction for constant-speed control.} & Positioning control does not start. & Designate a point between CPSTART and CPEND. \\
\hline 21 & Reference axis speed setting error & \multicolumn{3}{|l|}{In linear interpolation using the reference axis speed designation method, an axis not involved in the interpolation has been designated as the reference axis.} & Positioning control does not start. & Set one of the axes involved in the interpolation as the reference axis. \\
\hline 22 & S -curve ratio setting error & \multicolumn{3}{|l|}{The S-curve ratio when designating S-curve acceleration/deceleration is outside the range 0 to \(100 \%\).} & Control is executed with an S-curve ratio of \(100 \%\). & Set the S-curve ratio within the range 0 to 100\%. \\
\hline 23 & VSTART setting error & \multicolumn{3}{|l|}{Not even one speed-switching point has been set between a VSTART and VEND instruction, or between a FOR and NEXT instruction.} & Positioning control does not start. & Set a speed switching point between the VSTART and VEND instructions or the FOR and NEXT instructions. \\
\hline 24 & Cancel function start program No. error & \multicolumn{3}{|l|}{The start program No. for the cancel function has been set outside the range 0 to 4095 .} & Positioning control does not start. & Set the start program No. within the range 0 to 4095 and then start. \\
\hline 25 & High-Speed oscillation command amplitude error & \multicolumn{3}{|l|}{Operation cannot be started because the amplitude commanded for the high-speed oscillation function is outside the range 1 to 2147483647.} & Positioning control does not start. & Set the commanded amplitude within the range 1 to 214783647 and then start. \\
\hline 26 & High-Speed oscillation command starting angle error & \multicolumn{3}{|l|}{Operation cannot be started because the commanded starting angle for the high-speed oscillation function is outside the range 0 to 3599 (\(\times 0.1\) degrees).} & Positioning control does not start. & Set the starting angle within the range 0 to 3599 (\(\times 0.1\) degree) and then start. \\
\hline 27 & High-Speed oscillation command frequency error & \multicolumn{3}{|l|}{Operation cannot be started because the commanded frequency for the high-speed oscillation function is outside the range 1 to 5000 (CPM).} & Positioning control does not start. & Set the frequency within the range 1 to 5000 (CPM) and then start. \\
\hline
\end{tabular}

Table 2.2 Servo Program Setting Error List (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Error Code } \\
& \text { Stored in } \\
& \text { D9190 }
\end{aligned}
\] & Error Name & Error Contents & Error Processing & Corrective Action \\
\hline 900 & START instruction setting error & The servo program designated by the SVST program does not exist. & Positioning control does not start. & Set the correct servo program number. \\
\hline \multirow[b]{2}{*}{901} & \multirow[b]{2}{*}{START instruction setting error} & \multirow[t]{2}{*}{The axis number set for the SVST instruction is different from the axis number set for the servo program.} & \multirow[t]{2}{*}{Positioning control does not start.} & (1) Set the correct axis number. \\
\hline & & & & (2) Use the SVST instruction for 4axes linear interpolation. \\
\hline 902 & Servo program instruction code error & The instruction code cannot be decoded (a non-existent instruction code has been designated) & Positioning control does not start. & Set the correct instruction code. \\
\hline 903 & Start error & A virtual mode program was started in the real mode & Positioning control does not start. & Check the mode allocation for the program. \\
\hline 904 & Start error & A real mode program was started in the virtual mode & Positioning control does not start. & Check the mode allocation for the program. \\
\hline 905 & Start error & An instruction that cannot be used in the virtual mode (VPF, VPR, VPSTART, ZERO, VVF, VVR, OSC) was issued. & Positioning control does not start. & Correct the servo program. \\
\hline 906 & Axis No. setting error & An axis not used in the system settings has been set for the servo program set in a SVST instruction. & Positioning control does not start. & Set an axis number that is setted in the system settings. \\
\hline 907 & Start error & Start attempted during processing for switching from real mode to virtual mode. & Positioning control does not start. & Use M2034 (real/virtual mode switching request), M2044 \\
\hline 908 & Start error & Start attempted during processing for switching from virtual mode to real mode. & & (real/virtual mode status) as interlocks for starting. \\
\hline
\end{tabular}

\subsection*{2.2 Minor Errors}

Minor errors are those that occur in the sequence program or servo program.
The error codes for these errors are from 1 to 999.
Minor errors include set data errors, positioning control start-up errors, positioning control errors, and control change errors.
(1) Set data errors (1 to 99)

These errors occur when the data set in the parameters for positioning control is not correct.
The error codes, causes, processing, and corrective actions are shown in Table 2.3 below.

Table 2.3 Set Data Error List (1 to 99)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Error \\
Code
\end{tabular} & Data Where Error Occurred & Check Timing & Error Cause & Error Processing & Corrective Action \\
\hline 21 & \multirow{5}{*}{Zeroing data} & When count type, proximity dog type, or data set type zeroing is started. & The home position address of a degree axis is outside the range 0 to 35999999 (\(\times 10^{-5}\) degrees). & \multirow{5}{*}{Zeroing is not started.} & Set the home position address within the permissible range with a peripheral device. \\
\hline 22 & & \multirow[b]{2}{*}{When a count type or proximity dog type zeroing is started.} & The zeroing speed is set outside the range of 1 to the speed limit value. & & Set the zeroing speed at or below the speed limit value by using a peripheral device. \\
\hline 23 & & & The creep speed is set outside the range of 1 to the zeroing speed. & & Set the creep speed at or below the zeroing speed by using a peripheral device. \\
\hline 24 & & When a count type zeroing is started. & The travel value after the proximity dog comes ON is outside the range \(\mathrm{ON} 2^{31}-1(\times\) unit). & & Set the travel value after the proximity dog to within the permissible range with a peripheral device. \\
\hline 25 & & When a count type or proximity dog type zeroing is started. & The parameter block No. is outside the range of 1 to the maximum No. (Note-1) & & Set the parameter block No. within the permissible range with a peripheral device. \\
\hline 40 & Parameter block & When interpolation control is started & The unit for interpolation control designated in the parameter block is different from the control unit designated in the fixed parameters. & Control is executed using the control unit designated in the fixed parameters. & Designate the same control unit in the fixed parameters and servo parameters. \\
\hline
\end{tabular}

\section*{POINT}

Sometimes, if the interpolation control unit designated in the parameter block and the control unit designated in the fixed parameters are different, no error code is stored; this depends on the combination of units designated.
For details, see Section 7.1.4.
(2) Positioning control start-up errors (100 to 199)

The errors shown in this section are those detected when positioning control is started.
Error codes, causes, processing, and corrective actions are shown in Table 2.6 below.
(Note-1) : When interpolation control is being executed, the error codes are stored in the error code storage areas of all the axes involved in the interpolation.

Table 2.4 Positioning Control Start-Up Error List (100 to 199)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Control Mode} & & & \\
\hline Error Code & & & \[
\begin{aligned}
& \text { च } \\
& \text { む̀ } \\
& \text { in }
\end{aligned}
\] & & & & O & & 은
으N
N & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & Error Cause & Error Processing & Corrective Action \\
\hline 100 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\bigcirc\) & O & 0 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - The PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF. & & - Set the servo system CPU to RUN. \\
\hline 101 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & - & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - The start accept flag (M2001 to M2032) of the relevant axis has been turned ON . & & - Provide an interlock in the program to prevent the axis from being started while in motion (use the turning OFF of the start accept signal for the axis as the interlock condition). \\
\hline 103 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) & O & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - The stop command (M3200+20n) of the relevant axis has been turned ON. & & - Turn the stop command (M3200+20n) OFF and start positioning. \\
\hline 104 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & O & \(\bigcirc\) & - The rapid stop command (M3201+20n) of the relevant axis has been turned ON . & & - Turn the rapid stop command (M3201+20n) OFF and start positioning. \\
\hline 105 & \(\bigcirc\) & & & & \(\bigcirc\) & 0 & & & & \(\bigcirc\) & & - On starting, the feed current value is outside the stroke limit range. & & \begin{tabular}{l}
- Move back inside the stroke range using JOG operation. \\
- Enter inside the stroke range by executing a zeroing or current value change.
\end{tabular} \\
\hline 106* & \(\bigcirc\) & \(\bigcirc\) & & & \(\bigcirc\) & \(\bigcirc\) & & & & \(\bigcirc\) & \(\bigcirc\) & - Positioning outside the stroke limit has been designated. & & - Positioning end point must be within the specified stroke limit. \\
\hline 107 & \(\bigcirc\) & & & & & \(\bigcirc\) & & & & & & - An address that does not generate an arc was designated in circular interpolation for which an auxiliary point is designated.
\[
\left[\begin{array}{l}
\text { Error in relationship between the start } \\
\text { point, auxiliary point, and end point }
\end{array}\right]
\] & Positionin & - Designate correct addresses in the servo program. \\
\hline 108* & 0 & & & & & 0 & & & & & & - An address that does not make an arc was designated in circular interpolation for which a radius is designated.
\[
\left[\begin{array}{l}
\text { Error in relationship between the start } \\
\text { point, auxiliary point, and end point }
\end{array}\right]
\] & control does not start. & \\
\hline 109 & \(\bigcirc\) & & & & & 0 & & & & & & - An address that does not generate an arc was designated in circular interpolation for which a center point is designated.
\[
\left[\begin{array}{l}
\text { Error in relationship between the start } \\
\text { point, auxiliary point, and end point }
\end{array}\right]
\] & & \\
\hline 110* & \(\bigcirc\) & & & & & 0 & & & & & & - In circular interpolation, the difference between the end point address and the ideal end point exceeded the allowable error range for circular interpolation. & & \\
\hline 111 & & & & 0 & & & & & & & & - An attempt was been made to restart speed/position switching control although it had not stopped. & & - Do not attempt restart when speed/position switching control has not stopped. \\
\hline 115 & & & & & & & & & \(\bigcirc\) & & & - The zeroing completed signal (M2410+20n) has been turned ON during a proximity dog type zeroing operation. & & - Resumptive starts are not possible for zeroing return operations. Use JOG operation or positioning operation to return the axis to a point before the proximity dog signal was output, then retry the zeroing operation. \\
\hline
\end{tabular}

Table 2.4 Positioning Control Start-Up Error List (100 to 199) (Continued)

(3) Positioning control errors (200 to 299)

The errors shown in this section are those detected during positioning control. Error codes, causes and corrective actions are shown in Table 2.5.

Table 2.5 Positioning Control Start-Up Error List (200 to 299)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Control Mode} & & & \\
\hline Error Code & & & \[
\begin{aligned}
& \text { च } \\
& \text { む̀ } \\
& \text { in }
\end{aligned}
\] & & & & O & & & & \[
\begin{array}{|c|}
\hline 0 \\
0 \\
\hline
\end{array}
\] & Error Cause & Error Processing & Corrective Action \\
\hline 200 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & O & \(\bigcirc\) & 0 & & \(\bigcirc\) & \(\bigcirc\) & - The PLC ready flag (M2000) was turned OFF while positioning was being started in response to a start request issued by a sequence program. & & - Turn the PLC ready flag (M2000) ON after all axes have stopped. \\
\hline 201 & & & & & & & & & \(\bigcirc\) & & & - The PLC ready flag (M2000) was turned OFF during a zeroing operation. & to a stop. & - After turning the PLC ready flag (M2000) ON or turning the stop command \\
\hline 202 & & & & & & & & & O & & & - The stop command (M3200+20n) has been turned ON during a zeroing operation. & & (M3200+20n) or rapid stop command (M3201+20n) OFF, re-attempt zeroing. \\
\hline 203 & & & & & & & & & 0 & & & - The rapid stop command (M3201+20n) has been turned ON during a zeroing operation. & Axis motion stops immediately., & \(\left(\begin{array}{l}\text { In the case of a proximity dog type } \\ \text { zeroing, use JOG operation or } \\ \text { positioning operation to return the axis } \\ \text { to the point before the proximity dog } \\ \text { signal was output, and re-attempt } \\ \text { zeroing. }\end{array}\right)\) \\
\hline 204 & \(\bigcirc\) & 0 & \(\bigcirc\) & 0 & 0 & O & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & - The PLC ready flag (M2000) was turned back ON during deceleration initiated by turning OFF the PLC ready flag (M2000). & No processing & - Turn the PLC ready flag (M2000) ON after all axes have stopped.
\[
\left[\begin{array}{l}
\text { Turning ON the PLC ready flag } \\
\text { (M2000) during deceleration is ignored. }
\end{array}\right]
\] \\
\hline 206 & & & & & & & & & \(\bigcirc\) & & & - While a zeroing operation was in progress, an emergency stop was executed in the test mode at a peripheral device by pressing the [Back Space] key. & Axis motion stops immediately. & \begin{tabular}{l}
- In the case of a proximity dog type zeroing, use JOG operation or positioning operation to return the axis to the point before the proximity dog signal was output, and reattempt zeroing. \\
- If the proximity dog signal is turned OFF when executing a count type zeroing, use JOG operation or positioning operation to return the axis to the point before the proximity dog signal was output, and reattempt zeroing.
\[
\left[\begin{array}{l}
\text { In the proximity dog signal is } \\
\text { turned ON when executing count type } \\
\text { zeroing, re-attempt the zeroing. }
\end{array}\right]
\]
\end{tabular} \\
\hline 207 & \(\bigcirc\) & & & & 0 & 0 & \(\bigcirc\) & & & \(\bigcirc\) & & - The feed current value exceeded the stroke limit during positioning. In the case of circular interpolation, an error code is stored only for axis whose feed current value exceeded the stroke limit. In the case of linear interpolation, error codes are stored for all axes involved in the interpolation. & & - Correct the stroke limit or travel value setting so that positioning is executed within the stroke limit. \\
\hline 208 & \(\bigcirc\) & & & & \(\bigcirc\) & 0 & & \(\bigcirc\) & & & & - During circular interpolation or during simultaneous operation of multiple manual pulse generators, the feed current value of another axis exceeded the stroke limit value. (For detection of other axis errors). & Axis motion decelerates & \\
\hline 209 & & & & 0 & & & & & 0 & & & - An overrun has occurred because the set travel value exceeds the deceleration distance when a speed/position change (CHANGE) signal is input during speed/position switching control, or when the proximity dog signal is input during count type zeroing. & & \begin{tabular}{l}
- Correct the speed setting so that overrun does not occur. \\
- Set a travel value which will not cause an overrun.
\end{tabular} \\
\hline 210 & & & & \(\bigcirc\) & & & & & & & & - During speed/position switching control, the set travel value exceeds the stroke limit when a speed/position switching (CHANGE) signal is input. & & - Correct the stroke limit or travel value setting so that positioning is executed within the stroke limit. \\
\hline
\end{tabular}

Table 2.5 Positioning Control Error List (200 to 299) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Control Mode} & \multirow[b]{2}{*}{Error Cause} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline Error Code & & & & & & \[
\begin{aligned}
& \text { o } \\
& \stackrel{0}{0} \\
& \stackrel{0}{0} \\
& \stackrel{1}{N} \\
& \stackrel{N}{\omega} \\
& 0 \\
& 0
\end{aligned}
\] & ÓO & & & & \[
\left|\begin{array}{l}
0 \\
0 \\
0
\end{array}\right|
\] & & & & \\
\hline 211 & & & & & & 0 & & & & & & & - During positioning, an overrun occurs because the deceleration distance for the output speed is not attained at the point where the final positioning address is detected. & Axis motion decelerates to a stop. & \begin{tabular}{l}
- Set a speed at which overrun does not occur. \\
- Set a travel value which will not cause an overrun.
\end{tabular} \\
\hline 214 & & & & & & & & \(\bigcirc\) & & & & & - An attempt was made to control an axis already being moved by the manual pulse generator by setting the manual pulse generator operation enable flag for that axis. & The manual pulse generator input is ignored until the axis stops. & - Perform the manual pulse generator operation after the axis has stopped. \\
\hline 215 & & & & & \(\bigcirc\) & & & & & & & & \begin{tabular}{l}
- The speed switching point address is more than the end point address. \\
- An address to control positioning in the opposite direction was set during speed switching control.
\end{tabular} & A rapid stop is executed. & - Set the speed switching point within the range from the previous speed switching point address to the end point address. \\
\hline & & & & & & & & & & & & & - The same servo program was been executed a second time. & & - Modify the sequence program. \\
\hline 220 & & & & & & & & & & \(\bigcirc\) & & & ```
- In position follow-up control, when the control unit is "degrees", a command address outside the 0 to 35999999 has been set.
``` & Axis motion decelerates to a stop. (M2001+n & - When the control unit is "degrees", set a command address within the range 0 to 35999999. \\
\hline & & & & & & & & & & & & & - The command address has exceeded the stroke limit range in position follow-up control. & OFF) & - Set an address within the stroke limit range. \\
\hline 225 & & & & & & \(\bigcirc\) & & & & & & & - In constant speed control, the speed at the pass point exceeds the speed limit value. & The speed is kept at the speed limit value. & - Set a speed command value between 1 and the velocity limit value. \\
\hline
\end{tabular}
(4) Errors occurring at current value changes and speed changes (300 to 399) The errors shown in this section are those that occur on execution of current value changes and speed changes.
Error codes, causes, processing, and corrective actions are shown in table 2.6.
Table 2.6 List of Errors that Occur at Current Value/Speed Changes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Control Mode} & & & \\
\hline Error Code &  &  & \[
\begin{aligned}
& \mathbf{0} \\
& \dot{\mathbf{0}} \\
& \dot{0}
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
\] &  & 은
은
N &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & Error Cause & Error Processing & Corrective Action \\
\hline 300 & 0 & 0 & O & O & 0 & O & O & 0 & 0 & O & 0 & \begin{tabular}{l}
- An attempt was made to change the current value data of an axis in motion. \\
- An attempt was made to change the current value data of an axis that had not been started up. \\
- An attempt was made to change the current value data of an axis whose status was "servo OFF".
\end{tabular} & The current value data is not changed. & \begin{tabular}{l}
- Use the following states of the following devices as interlocks to ensure that the current value of an axis in motion cannot be changed. \\
(1) OFF state of the start accept flag (M2001 to M2032) for the relevant axis. \\
(2) ON state of the servo READY flag M2415+20n.
\end{tabular} \\
\hline 301 & & & & & & & & & 0 & & & - An attempt was made to change the speed of an axis executing a zeroing. & & - The speed of an axis executing a zeroing cannot be changed. \\
\hline 302 & 0 & & & & & \(\bigcirc\) & & & & & & - An attempt was made to change the speed of an axis executing circular interpolation. & & - The speed of an axis executing circular interpolation cannot be changed. \\
\hline 303 & 0 & 0 & & O & 0 & O & & & & 0 & & - An attempt was made to change the speed of an axis after automatic deceleration had started in positioning. & The speed is not changed. & - The speed of an axis cannot be changed after automatic deceleration has started. \\
\hline 304 & & & & & & & \(\bigcirc\) & & & & & ```
- An attempt was made to change the speed of an axis during deceleration initiated by turning OFF the JOG operation start signal (M3202+20n, M3203+20n).
``` & & - Do not attempt a speed change during deceleration initiated by turning OFF the JOG operation start signal (M3202+20n, M3203+20n). \\
\hline 305 & 0 & 0 & O & O & 0 & 0 & 0 & & & 0 & & - The speed to be changed to in a speed change was set outside the range of 0 to the speed limit value. & The speed is kept at the speed limit value. & - Set the speed within the range from 0 to the speed limit value. \\
\hline 309 & & & & & & & & & & & & - A current value change command outside the range of 0 to 35999999 (\(\times 10^{-5}\) degrees) has been issued for an axis whose control units are degrees. & The current value data is not changed. & - Make a setting in the range of 0 to 35999999 (\(\times 10^{-5}\) degrees). \\
\hline 310 & & & & & & & & & & & 0 & \begin{tabular}{l}
- A speed change was attempted during highspeed oscillation. \\
- A speed change to "0" request was issued during high-speed oscillation.
\end{tabular} & The speed is not changed. & - Do not perform speed changes during high-speed oscillation. \\
\hline 311 & & & & & & & & & & & & - A value outside the range 1 to \(500 \%\) was set in the torque limit value change request (CHGT). & The torque limit value is & - Make a change request within the range 1 to \(500 \%\). \\
\hline 312 & & & & & & & & & & & & - A torque limit change request (CHGT) was made for an axis not started yet. & not changed. & - Make a change request for a started axis. \\
\hline
\end{tabular}
(5) System errors (900 to 999)

Table 2.7 System Error List (900 to 999)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Control Mode} & & & \\
\hline Error Code & & & \[
\begin{aligned}
& \mathbf{\square} \\
& \stackrel{\rightharpoonup}{0} \\
& \dot{0}
\end{aligned}
\] & & & & O & & 은
으N
N & & O & & Error Cause & Error Processing & Corrective Action \\
\hline 900 & & & & & & & & & & & & & \begin{tabular}{l}
- When the servo amplifier power is switched ON, the motor type set in the "system settings" differs from the motor type actually installed. \\
(Checked only when using MR-J2S-B/ MR-J2-B)
\end{tabular} & Further operation is & - Correct the motor type setting in the system settings. \\
\hline 901 & & & & & & & & & & & & & - When the servo amplifier power is switched ON, the motor travel value while the power was OFF is found to have exceeded the "Power of Allowed Traveling Points" setting made in the system settings. & impossible. & - Check the position. Check the encoder battery. \\
\hline
\end{tabular}

\subsection*{2.3 Major Errors}

Major errors are caused by external input signals or by control commands from the SCPU. The error codes for major errors are 1000 to 1999.
Major errors consist of control start-up errors, positioning errors, absolute system errors, and system errors.
(1) Positioning control start-up errors (1000 to 1099)

The errors shown in this section are those detected when positioning control is started.
Error codes, error causes, error processing and corrective actions are shown in Table 2.8.

Table 2.8 Positioning Control Start-Up Error List (1000 to 1099)

(2) Positioning control errors (1100 to 1199)

The errors shown in this section are those detected during positioning.
Error codes, error causes, error processing, and corrective actions are shown in Table 2.9.

Table 2.9 Positioning Control Error List (1100 to 1199)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Control Mode} & & & & \\
\hline Error Code & & & \[
\begin{aligned}
& \text { ठ} \\
& \dot{\ddot{0}} \\
& \ddot{0}
\end{aligned}
\] & & & & © & & \[
\begin{gathered}
\text { O} \\
\stackrel{C}{0} \\
\stackrel{\rightharpoonup}{N} \\
\text { N }
\end{gathered}
\] & & \[
\begin{aligned}
& \text { U } \\
& 0
\end{aligned}
\] & & Error Cause & Error Processing & Corrective Action \\
\hline 1101 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & & - When positioning was started in the forward direction (addresses increasing), the external FLS (upper limit LS) signal was turned OFF. & Axis motion decelerates to a stop in accordance & - Move axis in the reverse direction in the JOG mode until it enters the external limit range. \\
\hline 1102 & 0 & 0 & O & O & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & 0 & & - When positioning was started in the reverse direction (addresses decreasing), the external RLS (lower limit LS) signal was turned OFF. & with the "deceleration processing on STOP & - Move the axis in the forward direction in the JOG mode until it enters the external limit range. \\
\hline 1103 & & & & & & & & & \(\bigcirc\) & & & & - The external STOP signal (stop signal) was turned ON while the axis was moving. & \begin{tabular}{l}
input" setting \\
in the \\
parameter \\
block.
\end{tabular} & - When executing a proximity dog type zeroing, move the axis to a point before the proximity dog in the JOG mode and then execute a zeroing. \\
\hline 1104 & 0 & \(\bigcirc\) & 0 & - & O & \(\bigcirc\) & 0 & O & 0 & - & \(\bigcirc\) & & - The servo error detection signal was turned ON while an axis was in motion. & The axis stops immediately without decelerating. & - After taking the appropriate corrective action for the servo error, the axis can be restarted. \\
\hline 1105 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & - & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & \begin{tabular}{l}
- The power supply to the servo amplifier was turned OFF while an axis was in motion. (Servo not installed status detected, cable fault, etc.) \\
- Zeroing did not finish successfully since the axis did not stop at the home position within the in-position range.
\end{tabular} & M2415+20n turned OFF. & \begin{tabular}{l}
- Turn ON the power supply to the servo amplifier. \\
- Check the cable to servo amplifier connecting cable. \\
- Make gain adjustment.
\end{tabular} \\
\hline
\end{tabular}
(3) Absolute System Errors (1200 to 1299)

The errors shown in this section are those detected in an absolute system.
Error codes, error causes, error processing, and corrective actions are shown in Table 2.10.

Table 2.10 Absolute System Error List (1200 to 1299)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Control Mode} & & & \\
\hline Error Code & & & & & & \[
\begin{aligned}
& \text { 흥 } \\
& \stackrel{0}{0} \\
& 0 \\
& \stackrel{L}{5} \\
& \stackrel{5}{\omega} \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
\] & & \[
\begin{aligned}
& \text { 은 } \\
& \stackrel{\rightharpoonup}{0} \\
& \text { N }
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & & Error Cause & Error Processing & Corrective Action \\
\hline 1201 & & & & & & & & & & & & & \begin{tabular}{l}
- When the servo amplifier power was switched ON, a sum check error occurred with the backup data in the controller. \\
- Zeroing has not been performed. \\
- CPU module battery error. \\
- Zeroing was started but it was not completed normally.
\end{tabular} & Zeroing request ON & - Check the battery of the CPU module and execute a zeroing. \\
\hline 1202 & & & & & & & & & & & & & - When the servo amplifier power is turned ON , a communication error in communication between the servo amplifier and encoder occurs. & Zeroing request ON, servo error 2016 set. & - Check the motor and encoder cables and perform zeroing again. \\
\hline 1203 & & & & & & & & & & & & & \begin{tabular}{l}
- During operation, the amount of change in the encoder current value complies with the following expression: "Amount of change in encoder current value \(/ 3.5 \mathrm{~ms} 180^{\circ}\) of motor revolution" \\
After the servo amplifier power has been turned ON, a continual check is performed (in both servo ON and OFF states).
\end{tabular} & No & - Check the motor and encoder cables. \\
\hline 1204 & & & & & & & & & & & & & \begin{tabular}{l}
- During operation, the following expression holds: "Encoder current value (PLS) \(=\) feedback current value (PLS) (encoder effective bit number)". \\
After the servo amplifier power has been turned ON , a continual check is performed (in both servo ON and OFF states).
\end{tabular} & & \\
\hline
\end{tabular}
(4) System errors (1300 to 1399, 1500 to 1599)

Errors detected at power-on.
Table 2.11 indicates the error codes, error causes, error processings and corrective actions.

Table 2.11 Main Base Side Error List (1300 to 1399, 1500 to 1599)

\section*{APPENDICES}

\subsection*{2.4 Servo Errors}

Servo errors are classified into servo amplifier errors and servo power supply module errors.
You can set to each system what processing will be performed at servo error detection. (Only servo errors detected by the ADU (when the A273UHCPU is used))
Set the processing and system in the system settings of the peripheral device.
\begin{tabular}{|c|l|l|}
\hline & \multicolumn{1}{|c|}{ Setting } & \multicolumn{1}{c|}{ Control Exercised } \\
\hline 1 & \begin{tabular}{l}
System-based servo OFF \\
(Default)
\end{tabular} & \begin{tabular}{l}
- If a servo error occurs at any one ADU axis, all axes in that system result in servo off. (Same control as at servo-off of \\
all axes is exercised.)
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Only own-axis servo off \\
- Only the ADU axis where a servo error occurred results in servo off and the other axes are not affected. \\
1) For the type which has two axes in one module, both axes result in servo off even at occurrence of a servo error at \\
one axis.
\end{tabular} \\
& \begin{tabular}{l}
2) Occurrence of any of the following servo errors will result in a system-based servo off status. \\
Overcurrent (2032) \\
Undervoltage (2810) \\
Overregeneration (2830) \\
Overvoltage (2833) \\
Amplifier power supply overheat (2847)
\end{tabular} \\
\hline
\end{tabular}
(1) Servo amplifier errors (2000 to 2799)

The servo amplifier errors are errors detected by the servo amplifier and are assigned error codes 2000 to 2799.
In the following tables, the types of servo amplifier are indicated for ADU and for MR- \(\square\)-B.
For the servo amplifier types, the ADU is abbreviated to \({ }^{\star}\)) and the MR- \(\square\)-B as (1).

The servo error detection signal (M2408+20n) comes ON when a servo error occurs. Eliminate the cause of the error, reset the error by turning ON the servo error reset signal (M3208+20n), and reset operation. (Note that the servo error detection signal will not come ON in response to error codes in the range 2100 to 2499 because these codes are for warnings.)
(Note-1): When an excessive regeneration error (code 2030), or overload 1 or 2 error (codes 2050, 2051) occurs, the state that applied when the error occurred is stored in the servo amplifier even after the protection circuit has operated. The memory contents are cleared if the external power supply is turned OFF, but are not cleared by the reset signal.
(Note-2): Repeated resetting by turning OFF the external power supply after occurrence of error code 2030, 2050, or 2051, may cause devices to be destroyed by overheating. Only restart operation after eliminating the cause of the error.
Details of servo errors are given in Table 2.12.

\section*{CAUTION}
1. If a controller or servo amplifier self-diagnosis error occurs, check the points stated in this manual and clear the error.

Table 2.12 Servo Amplifier Error List (2000 to 2799)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{2}{|r|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & Description & & & \\
\hline \multirow[b]{2}{*}{2010} & (A) & P-N non-wiring & - P-N of the servo power supply module are not wired to \(\mathrm{P}-\mathrm{N}\) of the ADU. & \multirow[b]{2}{*}{At any time during operation.} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- Reconsider wiring. \\
- Measure the input voltage (R, S, T) with a voltmeter. \\
 whether a momentary power \\
_ interruption has occurred. \\
- Review the power capacity.
\end{tabular}}} \\
\hline & (1) & Low voltage & \begin{tabular}{l}
- The power supply voltage is less than 160 VAC. (320VAC or less for 400 VAC series servo) \(\qquad\) \\
- A momentary power, interruption of 15 ms or longer has occurred. \\
- The power supply voltage dropped, for example when motion control started, due to insufficient power capacity.
\end{tabular} & & & \\
\hline & (A) & Internal memory
alarm & - ADU's SRAM fault. & - At power-on of servo amplifier & & - Change the ADU. \\
\hline 2012 & (1) & Memory error 1 & \begin{tabular}{l}
- Servo amplifier SRAM is faulty. \\
- Servo amplifier EPROM check sum error.
\end{tabular} & \begin{tabular}{l}
- When the servo amplifier power is turned ON \\
- At the leading edge of the PLC READY flag (M2000) \\
- When a servo error is reset \\
- When the power to the servo system CPU is turned ON
\end{tabular} & & - Replace the servo amplifier. \\
\hline 2013 & (1) & Clock error & - Servo amplifier clock fault. & \multirow{3}{*}{At any time during operation} & \multirow[b]{5}{*}{Immediate stop} & - Replace the servo amplifier. \\
\hline \multirow[t]{2}{*}{2014} & (A) & \multirow[t]{2}{*}{Watchdog} & \begin{tabular}{l}
- Servo control system fault \\
- ADU fault
\end{tabular} & & & \begin{tabular}{l}
- Reset and recheck the servo system CPU. \\
- Change the ADU.
\end{tabular} \\
\hline & (M) & & \begin{tabular}{l}
- Servo amplifier hardware fault \\
- Servo system CPU hardware fault
\end{tabular} & & & \begin{tabular}{l}
- Replace the servo amplifier. \\
- Replace the servo system CPU.
\end{tabular} \\
\hline & (A) & 2-port memory alarm & - ADU's 2-port memory fault. & \begin{tabular}{l}
- At power-on of servo amplifier \\
- At servo error reset
\end{tabular} & & \begin{tabular}{l}
- Reset and recheck the servo system CPU. \\
- Change the ADU.
\end{tabular} \\
\hline 2015 & (1) & Memory error 2 & - Servo amplifier EEPROM fault & \begin{tabular}{l}
- When the servo amplifier power is turned ON \\
- At the leading edge of the PLC READY flag (M2000) \\
- When a servo error is reset \\
- When the power to the servo system CPU is turned ON
\end{tabular} & & - Replace the servo amplifier. \\
\hline \multirow[b]{2}{*}{2016} & (A) & \multirow[b]{2}{*}{Position sensor error 1} & \begin{tabular}{l}
- At initialization, communication with encoder is not normal. \\
- The encoder type (ABS/INC) set in system settings differs from the actual encoder type.
\end{tabular} & \begin{tabular}{l}
- At power-on of servo amplifier \\
- At servo error reset
\end{tabular} & & \begin{tabular}{l}
- Reset and recheck the servo system CPU. \\
- Change the servo motor (encoder). \\
- Reconsider the system settings.
\end{tabular} \\
\hline & (1) & & - Fault in communication with the encoder & \begin{tabular}{l}
- When the servo amplifier power is turned ON \\
- At the leading edge of the PLC READY flag (M2000) \\
- When a servo error is reset \\
- When the power to the servo system CPU is turned ON
\end{tabular} & & \begin{tabular}{l}
- Check the encoder cable connector for disconnection. \\
- Change the servo motor. \\
- Change the encoder cable. \\
- Check the combination of encoder cable type (2-wire/4-wire type) and servo parameter.
\end{tabular} \\
\hline & (A) & & - ADU's analog-to-digital converter is faulty. & \begin{tabular}{l}
- At power-on of servo amplifier \\
- At servo error reset
\end{tabular} & & \begin{tabular}{l}
- Reset and recheck the servo system CPU. \\
- Change the ADU.
\end{tabular} \\
\hline 2017 & (1) & PCB error & - Faulty device in the servo amplifier PCB. & \begin{tabular}{l}
- When the servo amplifier power is turned ON \\
- At the leading edge of the PLC READY flag (M2000) \\
- When a servo error is reset \\
- When the power to the servo system CPU is turned ON
\end{tabular} & & - Replace the servo amplifier. \\
\hline 2019 & (1) & Memory error 3 & - Servo amplifier flash ROM check sum error & \begin{tabular}{l}
- When the servo amplifier power is turned ON \\
- At the leading edge of the PLC READY flag (M2000) \\
- When a servo error is reset \\
- When the power to the servo system CPU is turned ON
\end{tabular} & & - Replace the servo amplifier. \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Error \\
Code
\end{tabular}} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{2}{|r|}{Error Cause} & \multirow[t]{2}{*}{When Error Checked} & \multirow[t]{2}{*}{Error Processing} & \multirow[t]{2}{*}{Corrective Action} \\
\hline & & Name & Description & & & \\
\hline & (A) & & \begin{tabular}{l}
- The servo motor connected is not - as set. \\
- The U, V, and W phases of the ADU output resulted in a short _ circuit or ground fault. \\
- Wiring mistake of the \(U, V\), and \(W\) _ phases of the ADU output. \\
- Damage to the ADU's transistor module. \\
- ADU fault. \\
- Coupling fault of servo motor and - encoder. \\
- The servo motor oscillated.
\end{tabular} & \begin{tabular}{l}
- At power-on of servo amplifier \\
- At servo error reset
\end{tabular} & & \begin{tabular}{l}
- Reconsider the system settings. \\
- Check the servo motor cable. \\
- Correct the servo motor wiring. \\
- Change the ADU. \\
- Change the servo motor. \\
- Reconsider the servo parameters.
\end{tabular} \\
\hline 2032 & (M) & Overcurrent & \begin{tabular}{l}
- U, V, W in the servo amplifier outputs have short circuited with each other. \\
- \(\overline{\mathrm{U}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}\) in the servo amplifier outputs have shorted to ground. \\
- Incorrect wiring of \(\mathrm{U}, \overline{\mathrm{V}}, \overline{\mathrm{W}}\) phases _ in the servo amplifier outputs. \\
- The servo amplifier transistor is - damaged. \\
- Failure of coupling between servomotor and encoder \\
- Encoder cable failure \\
- A A servomotor that does not match _ the setting has been connected. \\
- The servomotor oscillated. \\
- Noise entered the overcurrent detection circuit.
\end{tabular} & & Immediate stop & \begin{tabular}{l}
- Check if there is a short circuit between \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) of the servo amplifier outputs. \\
- Check if \(\overline{\mathrm{U}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}\) of the servo amplifier outputs have been grounded to the ground terminal. Check if \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) of the servomotor are grounded to the core. \\
If grounding is found, replace the servo amplifier and/or motor. \\
- Correct the wiring. \\
- Replace the servo amplifier. \\
- Replace the servomotor. \\
- Replace the encoder cable. \\
- Check the connected motor set in the system settings. \\
- Check and adjust the gain value---the servo parameters. \\
- Check if any relays or valves are operating in the vicinity.
\end{tabular} \\
\hline 2033 & (M) & Overvoltage & \begin{tabular}{l}
- The converter bus voltage has reached 400 V or more. (800VAC or more for 400 VAC series servo) \\
- The frequency of acceleration and deceleration was too high for the regenerative ability. \\
- The regenerative resistor has been connected incorrectly. \\
- The regenerative resistor in the servo amplifier is destroyed. \\
- The power transistor for - regeneration is damaged. \\
- The power supply voltage is too high.
\end{tabular} & At any time during operation & & \begin{tabular}{l}
- Increase the acceleration time and deceleration time in the fixed parameters. \\
- Check the connection between \(C\) and \(P\) of the terminal block for the terminal block for regenerative resistance. \\
- Measure between \(\overline{\mathrm{C}}\) and \(\overline{\mathrm{P}}\) of the terminal block for regenerative resistance with a multimeter; if abnormal, replace the servo amplifier. (Measure about 3 minutes after the charge lamp has gone out.) \\
- Replace the servo amplifier. \\
- Measure the input voltage (\(\mathrm{R}, \mathrm{S}, \mathrm{T}\)) with a voltmeter.
\end{tabular} \\
\hline 2034 & (M) & Communications error & - Error in data received from the servo system CPU & & & \begin{tabular}{l}
- Check the connection of the motion bus cable. \\
- Check if there is a disconnection in the motion us cable. \\
- Check if the motion bus cable is clamped correctly.
\end{tabular} \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{2}{|r|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & Description & & & \\
\hline \multirow[b]{2}{*}{2035} & (A) & \multirow[b]{2}{*}{Data error} & \begin{tabular}{l}
- The command speed is too high. \\
- Servo system CPU fault.
\end{tabular} & \multirow{9}{*}{At any time during operation} & \multirow{9}{*}{Immediate stop} & \begin{tabular}{l}
- Reconsider the command speed. \\

\end{tabular} \\
\hline & (M) & & \begin{tabular}{l}
- There is excessive variation in the position commands from the servo system CPU; commanded speed is too high. \\
- Noise has entered the commands from the servo system CPU.
\end{tabular} & & & \begin{tabular}{l}
- Check the commanded speed, and the number of pulses per revolution and travel value per revolution in the fixed parameters. \(\qquad\) \\
- Check the connection of the motion bus cable connector. \\
- Check if the motion bus cable is clamped correctly. \\
- Check if the motion bus cable is clamped correctly. \\
- Check if any relays or valves are operating in the vicinity.
\end{tabular} \\
\hline & (A) & & - Servo system CPU fault. & & & - Change the servo system CPU. \\
\hline 2036 & (1) & Transmission error & - Fault in communication with the servo system CPU & & & \begin{tabular}{l}
- Check the connection of the motion bus cable connector. \\
- Check if there is a disconnection in the motion bus cable. \\
- Check if the motion bus cable is clamped correctly.
\end{tabular} \\
\hline 2042 & (1) & Feedback error & - Encoder signal fault & & & - Replace the servomotor. \\
\hline & (A) & Amplifier fin overheat & \begin{tabular}{l}
- The ADU fan is at a stop. \(\qquad\) \\
- The continuous output current of the ADU is exceeded. \\
- ADU's thermal sensor fault.
\end{tabular} & & & \begin{tabular}{l}
- Change the ADU fan. \\
- Reduce the load. \\

\end{tabular} \\
\hline 2045 & (1) & Fin overheating & \begin{tabular}{l}
- The heat sink in the servo amplifier is overheated. \\
- Amplifier error (rated output exceeded) \\
- Power repeatedly switched ON/OFF during overload. \\
- Cooling fault
\end{tabular} & & & \begin{tabular}{l}
- If the effective torque of the servomotor is high, reduce the load. \\
- Reduce the frequency of acceleration and deceleration. \\
- Check if the amplifier's fan has stopped. \\
(MR-H150B or higher) \\
- Check if the passage of cooling air is obstructed. \\
- Check if the temperature inside the panel is too high (range: 0 to \(+55^{\circ} \mathrm{C}\)). \\
- Check if the electromagnetic brake was actuated from an external device during operation. \\
- Replace the servo amplifier.
\end{tabular} \\
\hline \multirow[b]{2}{*}{2046} & (A) & \multirow[b]{2}{*}{Motor overheating} & \begin{tabular}{l}
- The thermal protector built in the servo motor malfunctioned. \\
- The continuous output of the servo motor is exceeded.
\end{tabular} & & & \begin{tabular}{l}
- Change the servo motor. \\
- Reduce the load.
\end{tabular} \\
\hline & (1) & & \begin{tabular}{l}
- The servomotor is overloaded. \\
- The servomotor and regenerative option are overheated. \\
- The thermal protector incorporated in the encoder is faulty.
\end{tabular} & & & \begin{tabular}{l}
- If the effective torque of the servomotor \\
- is high, reduce the load. \\
- Check the ambient temperature of the servomotor (range: 0 to \(+40^{\circ} \mathrm{C}\)). \\
- Replace the servomotor.
\end{tabular} \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Error \\
Code
\end{tabular}} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{2}{|r|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & Description & & & \\
\hline & (A) & Overload & \begin{tabular}{l}
- The rated current of the servo motor is exceeded. \\
- Reduce the load. \\
- Hunting due to parameter setting mistake.
\end{tabular} & & & \begin{tabular}{l}
- Load inertia or friction is too large. \\
- Reconsider the servo parameters.
\end{tabular} \\
\hline 2050 & (1) & Overload 1 & - An overload current of about 200\% has been continuously supplied to the servo amplifier and servomotor. & & & \begin{tabular}{l}
- Check if there has been a collision at the machine. \\
- If the load inertia is very large, either increase the time constant for acceleration and deceleration or reduce the load. \\
- If hunting occurs, adjust the position loop gain in the servo parameters. \\
- Check the connection of U, V, W of the servo amplifier and servomotor. \\
- Check for disconnection of the encoder cable. \\
- Replace the servomotor.
\end{tabular} \\
\hline 2051 & (1) & Overload 2 & - The servo amplifier and servomotor were overloaded at a torque close to the maximum torque (\(95 \%\) or more of the current control value). & & & \begin{tabular}{l}
- Check if there has been a collision at the machine. \\
- If the load inertia is very large, either increase the time constant for acceleration and deceleration or reduce the load. \\
- If hunting occurs, adjust the position loop gain / position control gain 1, 2, speed loop gain/ speed control gain 1, 2 in the servo parameters. \\
- Check the connection of \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) of the servo amplifier and servomotor. \\
- Check for disconnection of the encoder cable. \\
- Replace the servomotor. \\
- If the voltage of the bus in the servo amplifier has dropped (charge lamp has gone out), replace the servo amplifier.
\end{tabular} \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Amplifier } \\
\text { Type } \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|c|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & & Description & & & \\
\hline \multirow{25}{*}{\[
\begin{array}{|c|}
2201 \\
\text { to } \\
2224
\end{array}
\]} & \multirow{25}{*}{(A)} & \multirow{25}{*}{Parameter warning} & \multicolumn{2}{|l|}{- The parameter that was set is unauthorized.} & \multirow{25}{*}{At any time during operation} & \multirow{25}{*}{Operation continues} & \multirow[t]{25}{*}{- Reconsider the system settings and servo parameters.} \\
\hline & & & 2201 & Amplifier setting & & & \\
\hline & & & 2202 & Motor type & & & \\
\hline & & & 2203 & Motor capacity & & & \\
\hline & & & 2204 & Number of feedback pulses & & & \\
\hline & & & 2205 & In-position range & & & \\
\hline & & & 2206 & Position control gain 2 (actual position gain) & & & \\
\hline & & & 2207 & Speed control gain 2 (actual speed gain) & & & \\
\hline & & & 2208 & Speed integral compensation & & & \\
\hline & & & 2209 & Forward rotation torque limit value & & & \\
\hline & & & 2210 & Reverse rotation torque limit value & & & \\
\hline & & & 2211 & Emergency stop time delay & & & \\
\hline & & & 2212 & Position control gain 1 (model position gain) & & & \\
\hline & & & 2213 & Speed control gain 1 (model speed gain) & & & \\
\hline & & & 2214 & Load inertia ratio & & & \\
\hline & & & 2215 & Error excessive alarm level & & & \\
\hline & & & 2216 & Special compensation processing & & & \\
\hline & & & 2217 & Special servo processing & & & \\
\hline & & & 2218 & Td dead zone compensation & & & \\
\hline & & & 2219 & Feed forward gain & & & \\
\hline & & & 2220 & Unbalance torque compensation & & & \\
\hline & & & 2221 & Dither command & & & \\
\hline & & & 2222 & Gain operation time & & & \\
\hline & & & 2223 & Servo response level setting & & & \\
\hline & & & 2224 & - & & & \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{3}{|c|}{Error Cause} & \multirow[t]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & & Description & & & \\
\hline \multirow{37}{*}{\[
\begin{gathered}
2301 \\
\text { to } \\
2336
\end{gathered}
\]} & \multirow{37}{*}{(M)} & \multirow{37}{*}{Parameter alarm} & \multicolumn{2}{|l|}{- The servo parameter value is outside the setting range. (Any unauthorized parameter is ignored and the value before setting is retained.)} & \multirow{37}{*}{At any time during operation} & \multirow{37}{*}{Operation continues} & \multirow[t]{37}{*}{- Check the setting ranges of the servo parameters.} \\
\hline & & & 2301 & Amplifier setting & & & \\
\hline & & & 2302 & Regenerative resistance & & & \\
\hline & & & 2303 & Motor type & & & \\
\hline & & & 2304 & Motor capacity & & & \\
\hline & & & 2305 & Motor rpm & & & \\
\hline & & & 2306 & Number of feedback pulses & & & \\
\hline & & & 2307 & Rotating direction setting & & & \\
\hline & & & 2308 & Automatic tuning setting & & & \\
\hline & & & 2309 & Servo responsibility & & & \\
\hline & & & 2310 & Torque limit (forward) & & & \\
\hline & & & 2311 & Torque limit (reverse) & & & \\
\hline & & & 2312 & Load inertia ratio & & & \\
\hline & & & 2313 & Position control gain 1 & & & \\
\hline & & & 2314 & Speed control gain 1 & & & \\
\hline & & & 2315 & Position control gain 2 & & & \\
\hline & & & 2316 & Speed control gain 2 & & & \\
\hline & & & 2317 & Speed integral compensation & & & \\
\hline & & & 2318 & Notch filter & & & \\
\hline & & & 2319 & Feed forward coefficient & & & \\
\hline & & & 2320 & In-position range & & & \\
\hline & & & 2321 & Electromagnetic brake sequence output & & & \\
\hline & & & 2322 & Monitor output mode selection & & & \\
\hline & & & 2323 & Optional function 1 & & & \\
\hline & & & 2324 & Optional function 2 & & & \\
\hline & & & 2325 & Optional function 3 & & & \\
\hline & & & 2326 & Optional function 4 & & & \\
\hline & & & 2327 & Monitor output 1 offset & & & \\
\hline & & & 2328 & Monitor output 2 offset & & & \\
\hline & & & 2329 & Pre-alarm data
selection & & & \\
\hline & & & 2330 & Zero speed & & & \\
\hline & & & 2331 & Excessive error alarm level & & & \\
\hline & & & 3232 & Optional function 5 & & & \\
\hline & & & 3233 & Optional function 6 & & & \\
\hline & & & 2334 & PI-PID switching position droop & & & \\
\hline & & & 2335 & Torque limit compensation factor & & & \\
\hline & & & 2336 & Speed integral
compensation (actual
speed differential
compensation) & & & \\
\hline
\end{tabular}

Table 2.14 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{Amplifier
Type} & \multicolumn{3}{|c|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & & Description & & & \\
\hline \multirow{25}{*}{\[
\begin{array}{|c|}
2301 \\
\text { to } \\
2324
\end{array}
\]} & \multirow{25}{*}{(A)} & \multirow{25}{*}{Parameter alarm} & \multicolumn{2}{|l|}{- The servo parameter value is outside the setting range. (Any unauthorized parameter is ignored and the value before setting is retained.)} & \multirow{25}{*}{At any time during operation} & \multirow{26}{*}{Operation continues} & \multirow[t]{26}{*}{- Check the setting ranges of the servo parameters.} \\
\hline & & & 2301 & Amplifier setting & & & \\
\hline & & & 2302 & Motor type & & & \\
\hline & & & 2303 & Motor capacity & & & \\
\hline & & & 2304 & Number of feedback pulses & & & \\
\hline & & & 2305 & In-position range & & & \\
\hline & & & 2306 & Position control gain 2 (actual position gain) & & & \\
\hline & & & 2307 & Speed control gain 2 (actual speed gain) & & & \\
\hline & & & 2308 & Speed integral compensation & & & \\
\hline & & & 2309 & Forward rotation torque limit value & & & \\
\hline & & & 2310 & Reverse rotation torque limit value & & & \\
\hline & & & 2311 & Emergency stop time delay & & & \\
\hline & & & 2312 & Position control gain 1 (model position gain) & & & \\
\hline & & & 2313 & Speed control gain 1 (model speed gain) & & & \\
\hline & & & 2314 & Load inertia ratio & & & \\
\hline & & & 2315 & Error excessive alarm level & & & \\
\hline & & & 2316 & Special compensation processing & & & \\
\hline & & & 2317 & Special servo processing & & & \\
\hline & & & 2318 & Td dead zone compensation & & & \\
\hline & & & 2319 & Feed forward gain & & & \\
\hline & & & 2320 & Unbalance torque compensation & & & \\
\hline & & & 2321 & Dither command & & & \\
\hline & & & 2322 & Gain operation time & & & \\
\hline & & & 2323 & Servo response level setting & & & \\
\hline & & & 2324 & - & & & \\
\hline 2500 & (A) & Parameter alarm & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Among the servo parameters, any of the following items is unauthorized. \\
- Amplifier \\
- External regenerative brake resistor setting \\
- Motor type \\
- Motor capacity
\end{tabular}} & \begin{tabular}{l}
- At power-on of servo amplifier \\
- At servo error reset
\end{tabular} & & \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Amplifier } \\
\text { Type } \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|c|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & & Description & & & \\
\hline \multirow{25}{*}{\[
\begin{array}{|c|}
2501 \\
\text { to } \\
2524
\end{array}
\]} & \multirow{25}{*}{(A)} & \multirow{25}{*}{Parameter alarm} & \multicolumn{2}{|l|}{- The parameter that was set is unauthorized.} & \multirow[t]{25}{*}{\begin{tabular}{l}
- At power-on of servo amplifier \\
- On PLC ready (M2000) leading edge \\
- At servo error reset
\end{tabular}} & \multirow{25}{*}{Operation continues} & \multirow[t]{25}{*}{- Reconsider the system settings and servo parameters.} \\
\hline & & & 2501 & Amplifier setting & & & \\
\hline & & & 2502 & Motor type & & & \\
\hline & & & 2503 & Motor capacity & & & \\
\hline & & & 2504 & Number of feedback pulses & & & \\
\hline & & & 2505 & In-position range & & & \\
\hline & & & 2506 & Position control gain 2 (actual position gain) & & & \\
\hline & & & 2507 & \begin{tabular}{l}
Speed control gain 2 \\
(actual speed gain)
\end{tabular} & & & \\
\hline & & & 2508 & Speed integral compensation & & & \\
\hline & & & 2509 & Forward rotation torque limit value & & & \\
\hline & & & 2510 & Reverse rotation torque limit value & & & \\
\hline & & & 2511 & Emergency stop time delay & & & \\
\hline & & & 2512 & Position control gain 1 (model position gain) & & & \\
\hline & & & 2513 & Speed control gain 1 (model speed gain) & & & \\
\hline & & & 2514 & Load inertia ratio & & & \\
\hline & & & 2515 & Error excessive alarm level & & & \\
\hline & & & 2516 & Special compensation processing & & & \\
\hline & & & 2517 & Special servo processing & & & \\
\hline & & & 2518 & Td dead zone compensation & & & \\
\hline & & & 2519 & Feed forward gain & & & \\
\hline & & & 2520 & Unbalance torque compensation & & & \\
\hline & & & 2521 & Dither command & & & \\
\hline & & & 2522 & Gain operation time & & & \\
\hline & & & 2523 & Servo response level setting & & & \\
\hline & & & 2524 & - & & & \\
\hline
\end{tabular}

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)

Table 2.12 Servo Amplifier Error List (2000 to 2799) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & \multirow[t]{2}{*}{Amplifier Type} & \multicolumn{3}{|c|}{Error Cause} & \multirow[b]{2}{*}{When Error Checked} & \multirow[b]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & & Name & & Description & & & \\
\hline \multirow{25}{*}{\[
\begin{gathered}
2601 \\
\text { to } \\
2624
\end{gathered}
\]} & \multirow{25}{*}{(A)} & \multirow{25}{*}{Initial parameter alarm} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- The parameter setting is wrong. \\
- The parameter data was corrupted.
\end{tabular}} & \multirow[t]{25}{*}{\begin{tabular}{l}
- At power-on of servo amplifier \\
- On PLC ready (M2000) leading edge \\
- At servo error reset \\
- At power-on of servo system CPU
\end{tabular}} & \multirow{25}{*}{Immediate stop} & \multirow[t]{25}{*}{- After checking and correcting the parameter setting, turn the servo system CPU power OFF, then ON, reset the servo system CPU with the key, or turn PLC ready (M2000) OFF, then ON .} \\
\hline & & & 2601 & Amplifier setting & & & \\
\hline & & & 2602 & Motor type & & & \\
\hline & & & 2603 & Motor capacity & & & \\
\hline & & & 2604 & Number of feedback pulses & & & \\
\hline & & & 2605 & In-position range & & & \\
\hline & & & 2606 & Position control gain 2 (actual position gain) & & & \\
\hline & & & 2607 & Speed control gain 2 (actual speed gain) & & & \\
\hline & & & 2608 & Speed integral compensation & & & \\
\hline & & & 2609 & Forward rotation torque limit value & & & \\
\hline & & & 2610 & Reverse rotation torque limit value & & & \\
\hline & & & 2611 & Emergency stop time delay & & & \\
\hline & & & 2612 & Position control gain 1 (model position gain) & & & \\
\hline & & & 2613 & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Speed control gain } 1 \\
\text { (model speed gain) }
\end{array} \\
\hline
\end{array}
\] & & & \\
\hline & & & 2614 & Load inertia ratio & & & \\
\hline & & & 2615 & Error excessive alarm level & & & \\
\hline & & & 2616 & \[
\begin{array}{|l|}
\hline \text { Special compensation } \\
\text { processing } \\
\hline
\end{array}
\] & & & \\
\hline & & & 2617 & Special servo processing & & & \\
\hline & & & 2618 & Td dead zone compensation & & & \\
\hline & & & 2619 & Feed forward gain & & & \\
\hline & & & 2620 & Unbalance torque compensation & & & \\
\hline & & & 2621 & Dither command & & & \\
\hline & & & 2622 & Gain operation time & & & \\
\hline & & & 2623 & Servo response level setting & & & \\
\hline & & & 2624 & - & & & \\
\hline
\end{tabular}
(2) Servo power supply module errors (2800 to 2999)

The servo power supply module errors are detected by the servo amplifier and assigned error codes 2800 to 2999.
When any of the servo errors occurs, the servo error detection signal (M2408+20n) turns ON. Eliminate the error cause and turn ON the servo error reset (M3208+20n) to reset the servo error, and make a restart. (However, the servo error detection signal will not turn ON for any of the error codes 2900 to 2999 as they are warning.)
(Note-1): For regenerative alarm protection (error code 2830), the status when the protective circuit was activated is still retained in the servo amplifier after activation. The data stored is cleared when the external power is switched OFF, but is not cleared by the RESET signal.
(Note-2): If the external power is switched OFF repeatedly to reset the error code 2830, overheat may lead to damage to the devices. Therefore, resume operation after removing the cause without fail.
The servo power supply module error definitions are given in Table 2.13.
Table 2.13 Servo Power Supply Module Error (2800 to 2999) List
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Error Code} & & Error Cause & \multirow[b]{2}{*}{When Error Checked} & \multirow[t]{2}{*}{Error Processing} & \multirow[b]{2}{*}{Corrective Action} \\
\hline & Name & Description & & & \\
\hline 2810 & Undervoltage & \begin{tabular}{l}
- The power supply voltage of the servo power supply module fell below 170VAC. \\
- Instantaneous power failure occurred. \\
- Load is too large.
\end{tabular} & \multirow{5}{*}{At any time during operation} & \multirow{4}{*}{Immediate stop} & \begin{tabular}{l}
- Reconsider the power supply equipment. \\
- Reconsider the power supply capacity.
\end{tabular} \\
\hline 2830 & Excessive regeneration & \begin{tabular}{l}
- High-duty operation or continuous regenerative operation caused the max. load capacity of the regenerative brake resistor to be exceeded. \\
- Regenerative power transistor was damaged. \\
- Regenerative brake resistor setting mistake in system settings \\
- Regenerative brake resistor wiring mistake.
\end{tabular} & & & \begin{tabular}{l}
- Reconsider the operation pattern, e.g. decrease the acceleration/deceleration frequencies or reduce the speed. \\
- Change the servo power supply module. \\
- Reconsider the system settings. \\
- Correct the wiring.
\end{tabular} \\
\hline 2833 & Overvoltage & \begin{tabular}{l}
- Regenerative brake resistor connection mistake. \\
- Regenerative power transistor was damaged. \\
- Regenerative brake resistor is dead. \\
- Power supply voltage is high.
\end{tabular} & & & \begin{tabular}{l}
- Correct the wiring. \\
- Change the servo power supply module. \\
- Change the regenerative brake resistor. \\
- Reconsider the power supply equipment.
\end{tabular} \\
\hline 2847 & Amplifier power supply overheat & \begin{tabular}{l}
- The servo power supply module fan is at a stop. \\
- The continuous output current of the servo power supply module is exceeded. \\
- Thermal sensor fault.
\end{tabular} & & & \begin{tabular}{l}
- Change the fan. \\
- Reduce the load. \\
- Change the servo power supply module.
\end{tabular} \\
\hline 2940 & Excessive regeneration warning & - \(80 \%\) level of the excessive regeneration error (2830) was detected. & & Operation continues & - Refer to details of the excessive regeneration error (2830). \\
\hline
\end{tabular}

\subsection*{2.5 PC Link Communication Errors}

Table 2.14 PC Link Communication Error Codes
\begin{tabular}{|c|c|c|}
\hline Error Codes Stored in D9196 & Error Description & Action to Take \\
\hline 01 & A receiving packet for PC link communication does not arrive. The arrival timing of the receiving packet is too late. & \begin{tabular}{l}
- Check whether the PC has been switched ON. \\
- Check whether the communication cable has been connected firmly. \\
- Check whether the communication cable has been broken. \\
- Check whether the A30BD-PCF or A30CDPCF has been mounted normally.
\end{tabular} \\
\hline 02 & A receiving packet CRC code is invalid. & \begin{tabular}{l}
- Check whether there is a noise source near the PC. \\
- Check whether the communication cable has been connected firmly. \\
- Check whether the communication cable has been broken.
\end{tabular} \\
\hline 03 & A receiving packet data ID is invalid. & \begin{tabular}{l}
- Check whether the A30BD-PCF or A30CDPCF has been mounted normally. \\
- Replace the A30BD-PCF or A30CD-PCF.
\end{tabular} \\
\hline 04 & The number of received frames is invalid. & \begin{tabular}{l}
- Check whether the communication cable has been connected firmly. \\
- Check whether the communication cable has been broken. \\
- Check whether there is a noise source near the PC.
\end{tabular} \\
\hline 05 & A PC communication task is not active yet. & - Start the PC communication task. \\
\hline
\end{tabular}

\subsection*{2.6 LED Indications when Errors Occur at the PCPU}

When the errors listed below occur, they are indicated by the "ERROR" LED on the front panel of the CPU module. The error message can be read on the error list monitor screen of the peripheral device.
For details on the operating procedure, refer to the operating manual for the peripheral device.

Table 2.15 LED Indications When Errors Occur at PCPU
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|}
\hline A173UHCPU \\
(S1) LED \\
Indication \\
@:On \\
O:Off \\
\hline
\end{tabular} & A273UHCPU Front LED Indication & Error Cause & Error Check Timing & Operation when Error Occurs & Error Set Device & Corrective Action \\
\hline \(\bullet\) & & - The slot set in "system settings" contains no or different module. & \multirow{7}{*}{At power-on At reset with reset key} & \multirow[t]{7}{*}{- Start is disabled.} & \multirow[t]{8}{*}{- System setting error flag (M2041) ON} & \multirow[t]{8}{*}{- Match "system settings" with the actual module and reset with the reset key.} \\
\hline \(\bullet\) & A, A, I, S, , NO, , M, U,L, T, , D, E, . & - There are overlapping axis number settings in "system settings". & & & & \\
\hline \(\bullet\) & AM, P, N, N, S, S, T, T, T, IN, N, & - Not one axis number is set in "system settings". & & & & \\
\hline - & PW, NO, S.E.T, T, ING. \({ }_{\text {, }}\) & - When the ADU axis is set in "system settings", the servo power supply module (A230P) is not set. & & & & \\
\hline \(\bullet\) & SY, S. S. S.E.T, D.A.T, A. E. .R.R & \begin{tabular}{l}
- "System settings data" is not written. \\
- "System settings data" was written without relative check, or was written with an error found in relative check. \\
- Memory cassette battery is dead.
\end{tabular} & & & & \\
\hline \(\bullet\) & AXI, S. .NO... ERRROR. & - The axis number set in "system settings" is more than the number of control axis. & & & & \\
\hline \(\bullet\) & ILI, O, P, P, INT, S. O,V.E. & - The total I/O points of the PLC I/O modules set to the motion slots in "system settings" are more than 256 points. & & & & \\
\hline \(\bullet\) & \(\underbrace{\text { AM, P, TY, T, E, E,R,RORID }}_{\)\begin{tabular}{c}
\text { Axis. No. } \\
\(\text { (01 to 32 })\)
\end{tabular}\(}\) & - The amplifier type (MR-H-BN/MR-J2-B/MR-J2S-B) set in "system settings" differs from the actual amplifier type (MR-H-BN/MR-J2-B/MR-J2S-B) & At power-on of servo amplifier & - Only the corresponding axis is not put in servo ON status and cannot be started. & & \\
\hline - & \(\frac{\text { AD, U. ERRROR, (S,L_I_) }}{\text { (Note) Base No. + slot No. }}\) & - ADU hardware fault. & At power-on (At reset with reset key) & - The corresponding ADU axis cannot be placed in servo ON status. & \begin{tabular}{l}
- Servo error detection flag (M2408+20n) ON \\
- Servo error code device (D08+20n) set
\end{tabular} & - Change the ADU. \\
\hline For servo error & & - Servo error or warning & Any time & \begin{tabular}{l}
- For the MR-H-BN /MR-J2S-B axis, only that axis is put in servo OFF status. \\
- For the ADU axis, processing is
\end{tabular} & \begin{tabular}{l}
- Servo error detection flag (M2408+20n) ON \\
- Servo error code device (D08+20n) set
\end{tabular} & - Remove the error cause and reset the servo error. If the servos of all axes return to normal after servo error reset, the \\
\hline For warning 0 & -E (**) indicates that the code is common to all axes. & & Any & performed in accordance with the setting of "ADU servo error processing". & & LED indication goes off. \\
\hline
\end{tabular}

Table 2.15 LED Indications When Errors Occur at PCPU (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|c|}
\hline A173UHCPU \\
(S1) LED \\
Indication \\
©:On \\
O:Off \\
\hline
\end{tabular} & A273UHCPU Front LED Indication & Error Cause & Error Check Timing & Operation when Error Occurs & Error Set Device & Corrective Action \\
\hline & & - Servo power supply module (A230P)-detected servo error or warning occurrence & & - In that line, all axes are put in servo OFF status. & \begin{tabular}{l}
- Servo error detection flag (M2408+20n) ON \\
- Servo error code device (D08+20n) set
\end{tabular} & - Remove the error cause and reset the servo error. If the servos of all axes return to normal after servo error reset, the LED indication goes off. \\
\hline & \begin{tabular}{l}
 \\
System error code (major error) detected by servo power supply module \\
Indicates the "n"th servo power supply module. Indicates the system error which is independent of the servo
power supply module line.
\end{tabular} & - Servo power supply module (A230P)-detected system error (major error) occurrence & Any time & - In that line, all axes are put in servo OFF status. & \begin{tabular}{l}
- Major error detection flag (M2407+20n) ON \\
- Major error code device (D07+20n) set
\end{tabular} & - Remove the error cause and give allaxis servo ON command. If all axes are put in servo ON status properly, the LED goes off. \\
\hline \(\bullet\) & \(\frac{\text { S.L._, U, U, I, T, , E, R, R,O,R,. }}{\text { (Note) Base No. + slot No. }}\) & - Motion slot module fault detection (During operation, the module has come off or is coming off) & & & - Motion slot module fault detection flag (M2047) ON & - Switch power off and load the module properly. \\
\hline \(\bullet\) & & - PCPU WDT error occurrence & & - All axes stop immediately. & \begin{tabular}{l}
- PCPU WDT error flag (M9073) ON \\
- PCPU WDT error cause (D9184) set
\end{tabular} & - Refer to Sections 3.3, 3.4. \\
\hline
\end{tabular}
(Note) Indicates the base number, slot number and slot information in error.
(SLag)
- Slot Number in error

0 : I/O slot 0
to
7: //O slot 7
Base number in error
0 : CPU base
1: Motion extension base 1
2: Motion extension base 2
3: Motion extension base 3
4: Motion extension base 4

\section*{REMARK}
n in Table 2.15 (Error Set Device) is the value corresponding to the axis number.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) & Axis No. & \(\mathbf{n}\) \\
\hline 1 & 0 & 9 & 8 & 17 & 16 & 25 & 24 \\
\hline 2 & 1 & 10 & 9 & 18 & 17 & 26 & 25 \\
\hline 3 & 2 & 11 & 10 & 19 & 18 & 27 & 26 \\
\hline 4 & 3 & 12 & 11 & 20 & 19 & 28 & 27 \\
\hline 5 & 4 & 13 & 12 & 21 & 20 & 29 & 28 \\
\hline 6 & 5 & 14 & 13 & 22 & 21 & 30 & 29 \\
\hline 7 & 6 & 15 & 14 & 23 & 22 & 31 & 30 \\
\hline 8 & 7 & 16 & 15 & 24 & 23 & 32 & 31 \\
\hline
\end{tabular}

Make the following calculation to find the device number corresponding to each axis.
(Example) M2408+20n (Servo error detection flag) = M2408+20×31=M3028 D07+20n (Major error code device) = D07+20×31=D627

\section*{APPENDIX3 SPECIAL RELAYS AND SPECIAL REGISTERS}

\subsection*{3.1 Special Relays (SP, M)}

The special relays are internal relays with fixed applications in the programmable controller. Accordingly, they must not be turned ON and OFF in sequence programs (those (Note-1) and (Note-2) in the table are exceptions).

Table 3.1 Special Relay List

Table 3.1 Special Relay List (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline \begin{tabular}{l}
M9025 \\
(Note-1)
\end{tabular} & Clock data set request & OFF No processing ON Data set request & - Writes the clock data stored in D9025 to D9028 to the clock devices after execution of the END instruction in the scan in which M9025 is switched ON. \\
\hline M9026 & Clock data error & OFF No error ON Error & - Comes ON when there is an error in he clock data (D9025 to D9028) values. OFF when there is no error. \\
\hline \[
\begin{gathered}
\hline \text { M9028 } \\
\text { (Note-2) } \\
\hline
\end{gathered}
\] & Clock data read request & OFF No processing ON Read request & - When M2098 is ON, the clock data is read to D9025 to D9028 as BCD data. \\
\hline \begin{tabular}{l}
M9029 \\
(Note-2)
\end{tabular} & Data communication request batch processing & \begin{tabular}{ll}
OFF & \begin{tabular}{l}
Batch processing not \\
performed
\end{tabular} \\
ON & Batch processing performed
\end{tabular} & \begin{tabular}{l}
- By turning ON M9029 in the sequence program, the data communication requests accepted during one scan are all handled at the END processing of that scan. \\
- Data communication request batch processing can be turned from ON/OFF to OFF/ON during RUN. \\
- The default is OFF. (The data communication requests are handled one by one at every END processing in their accepted order.)
\end{tabular} \\
\hline M9030 & 0.1 second clock & & \\
\hline M9031 & 0.2 second clock & & ays generate the 0.1 second, 0.2 second, 1 second, 2 \\
\hline M9032 & 1 second clock & & \begin{tabular}{l}
second, and 1 minute clocks. \\
- These relays do not go ON/OFF with each scan but when their respective fixed intervals have elapsed, even during a scan.
\end{tabular} \\
\hline M9033 & 2 second clock & \[
1 \mathrm{SEC} .
\] & or resetting. \\
\hline M9034 & 1 minute clock & \[
30 \mathrm{SEC} .
\] & \\
\hline M9036 & Always ON & \begin{tabular}{l}
ON \\
OFF
\end{tabular} & \\
\hline M9037 & Always OFF & \begin{tabular}{l}
ON \\
OFF
\end{tabular} & \begin{tabular}{l}
- Relay used for initialization during a sequence program or as a dummy contact for an application instruction. \\
- M9036 and M9037 retain their ON or OFF status regardless of the settings of the key switch on the front of the CPU, but M9038 and
\end{tabular} \\
\hline M9038 & ON for 1 scan only after RUN & & M9039 change in accordance with the key switch status. They go OFF when the key switch is set to the STOP position. When the key switch is at a position other than STOP, M9038 comes ON for one scan only, and M9039 goes OFF for one scan only. \\
\hline M9039 & RUN flag (OFF for 1 scan only after RUN) & & \\
\hline M9040 & PAUSE enable coil & OFF PAUSE disable ON PAUSE enabled & - When the RUN/STOP key switch is set to PAUSE or the remote \\
\hline M9041 & PAUSE status contact & OFF PAUSE not in effect ON PAUSE in effect & status is established and M9041 comes ON. \\
\hline M9042 & STOP status contact & OFF STOP not in effect ON STOP in effect & - ON when the RUN/STOP key switch is set to STOP. \\
\hline M9043 & Sampling trace completed & OFF Sampling trace in progress ON Sampling trace completed & - Comes ON on completion of the number of sampling traces set in the parameters are completed after execution of the STRA instruction. After that, it is reset by execution of the STRAR instruction. \\
\hline M9044 & Sampling trace & \(0 \rightarrow 1\) Same as \(\square\) execution \(1 \rightarrow 0\) Same as \(\square\) execution & \begin{tabular}{l}
- Turning M9044 ON/OFF enables the STRA
\(\square\)
\(\square\) instruction to be executed simulatively. (M9044 is forced to be turned ON/OFF by the peripheral device.) \\
The STRA instruction is executed when M9044 turns from OFF to ON. The STRAR instruction is executed when M9044 turns from ON to OFF.
\end{tabular} \\
\hline M9045 & Watchdog timer (WDT) reset & OFF WDT is not reset. ON WDT is reset. & - Turning M9045 ON resets the WDT when the ZCOM instruction or data communication request batch processing is executed. (Used when the scan time exceeds 200 ms .) \\
\hline M9046 & Sampling trace & \begin{tabular}{ll}
OFF & Trace not in progress \\
ON & Trace in progress
\end{tabular} & - ON during execution of a sampling trace \\
\hline M9047 & Sampling trace preparation & OFF Sampling trace stop ON Sampling trace start & \begin{tabular}{l}
- A sampling trace cannot be executed unless M9047 has been turned ON. \\
When M9047 is turned OFF, the sampling trace is stopped.
\end{tabular} \\
\hline
\end{tabular}

Table 3.1 Special Relay List (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline M9049 & Number of output characters selection & OFF Output until NULL code ON 16 characters output & - When M9049 is OFF, output continues until the NULL \((00 \mathrm{H})\) code. When M9049 is ON, ASCII code for 16 characters is output. \\
\hline \[
\begin{gathered}
\hline \text { M9052 } \\
\text { (Note-2) } \\
\hline
\end{gathered}
\] & SEG instruction switch & OFF 7-segment display ON I/O part refresh & - When M9052 is ON it is executed as the I/O partial refresh instruction. When M9052 is ON, it is executed as the 7 -segment display instruction. \\
\hline \[
\begin{gathered}
\text { M9053 } \\
\text { (Note-2) } \\
\hline
\end{gathered}
\] & EI/DI instruction switch & OFF Sequence interrupt control ON Link interrupt control & - Turn ON when a link refresh enable/disable (EI, DI) instruction is executed. \\
\hline M9054 & STEP RUN flag & OFF STEP RUN not in effect ON STEP RUN in effect & - ON when the RUN/STOP key switch is set to the RUN position. \\
\hline M9055 & Status latch completion flag & OFF Not completed ON Completed & - Comes ON when status latch is completed. Goes OFF on execution of a reset instruction. \\
\hline M9056 & Main side P/I setting request & \begin{tabular}{ll}
ON & During P/I set request \\
OFF & Other than during P/I set request
\end{tabular} & - Turns ON the P/I set request at completion of transfer of the other program (e.g. subprogram when the main program is during run) \\
\hline M9057 & Sub side P/I setting request & \begin{tabular}{ll}
ON & During P/I set request \\
OFF & Other than during P/I set request
\end{tabular} & program (e.g. subprogram when the main program is during run)
during run. Automatically turned OFF at completion of P/I setting. \\
\hline M9058 & Main side P/I setting completion & Turns ON instantaneously at completion of P/l setting. & \\
\hline M9059 & Sub side P/I setting completion & Turns ON instantaneously at completion of \(\mathrm{P} / \mathrm{l}\) setting. & diately. \\
\hline M9065 & Split processing execution detection & OFF Not during split processing ON During split processing & - ON during execution of the instruction for AD57(S1) or AD58 in split processing and turns OFF at completion of execution (split processing is not performed). \\
\hline \[
\begin{aligned}
& \text { M9066 } \\
& \text { (Note-2) }
\end{aligned}
\] & Split processing request flag & OFF Batch processing ON Split processing & - M9066 is turned ON to split-process the instruction which is designed for AD57(S1) or AD58 and has long processing time since that instruction increases the scan time substantially. \\
\hline \[
\begin{gathered}
\text { M9070 } \\
\text { (Note-2) } \\
\hline
\end{gathered}
\] & A8UPU/A8PUJ search time & OFF Without read time reduction ON Read time reduction & - Turned ON to reduce the time required for the A8UPU/A8PUJ to search. (In this case, the scan time of the CPU increases 10\%.) \\
\hline M9081 & Communication request registration area busy signal & \begin{tabular}{ll}
OFF & \begin{tabular}{l}
Communication request \\
registration areas free
\end{tabular} \\
ON & \begin{tabular}{l}
No communication request \\
registration areas free
\end{tabular} \\
\hline
\end{tabular} & - Turns ON when there are no free registration areas among the 32 areas used for registering the standby instructions (FROM/TO) to be given to the MNET/MINI(-S3). \\
\hline M9084
(Note-2) & Error check & OFF Error check executed ON No error check & \begin{tabular}{l}
- Set whether or not the error check shown below is executed on END instruction processing. (Used to shorten END instruction processing time.) \\
(1) Blown fuse check \\
(2) I/O module verification check \\
(3) Battery check
\end{tabular} \\
\hline \[
\begin{gathered}
\hline \text { M9091 } \\
\text { (Note-1) }
\end{gathered}
\] & Instruction error flag & OFF No error ON Error occurrence & - Turns ON at occurrence of an instruction-related error. Remains ON if the condition returns to normal. \\
\hline \begin{tabular}{l}
M9094 \\
(Note-2) \\
(Note-3)
\end{tabular} & I/O change flag & OFF Not changed ON Changed & \begin{tabular}{l}
- After setting the first I/O number of the changed I/O module to D9094, turning M9094 ON enables the I/O module to be changed online. (Only one module may be changed in single setting.) \\
- When making an I/O change during RUN, use the program or the test mode of the peripheral device. During STOP, use the test mode of the peripheral device. \\
- Do not change the RUN/STOP mode to the other until I/O change is finished.
\end{tabular} \\
\hline M9100 & Presence/absence of SFC program & OFF SFC program absent ON SFC program present & \begin{tabular}{l}
- Turns ON when the SFC work area is secured for the SFC program registered. \\
- OFF when there is no SFC program registered or the SFC work area is not secured.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { M9101 } \\
& \text { (Note-2) }
\end{aligned}
\] & Start/stop of SFC program & OFF SFC program stop ON SFC program start & - Turned ON by the user to start the SFC program. Turn OFF to turn OFF the operation output of the execution step and stop the SFC program. \\
\hline \[
\begin{gathered}
\text { M9102 } \\
\text { (Note-2) }
\end{gathered}
\] & Starting status of SFC program & \begin{tabular}{l}
OFF Initial start \\
ON Continuous start
\end{tabular} & \begin{tabular}{l}
- Choose the start step when the SFC program is restarted by M9101. \\
ON : The execution conditions at an SFC program stop are all cleared and the program is started at the initial step of block 0. \\
OFF : The SFC program is started at the execution block and execution step it had been stopped. \\
- Once turned ON, M9102 is latched (compensated for power failure) by the system.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { M9103 } \\
& \text { (Note-2) }
\end{aligned}
\] & Presence/absence of consecutive transition & OFF Without consecutive transition ON With consecutive transition & \begin{tabular}{l}
- Select whether or not to execute all the steps whose transition conditions have held within one scan when the transition conditions of consecutive steps have all held. \\
ON : Executed consecutively. (With consecutive transition) \\
OFF : One step is executed at each scan. \\
(Without consecutive transition)
\end{tabular} \\
\hline M9104 & Consecutive transition inhibit flag & OFF Transition finished ON Transition not executed & - Turns ON when consecutive transition is not executed during consecutive transition, and turns OFF when the transition of one step is finished. Describing M9104 under the AND condition as a transition condition inhibits the consecutive transition of the corresponding step. \\
\hline
\end{tabular}

Table 3.1 Special Relay List (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Number & Name & \multirow{8}{*}{\[
\begin{array}{ll}
\text { OFF } & M \\
\text { ON } & M
\end{array}
\]} & Stored Data & & & Explanation \\
\hline M9108 (Note-2) & Step transition monitoring timer start(Corresponding to D9108) & & \multirow{7}{*}{Monitoring timer reset Monitoring timer start} & \multicolumn{3}{|l|}{\multirow{7}{*}{Turned ON to start the timing of the step transition monitoring timer. Turn OFF to reset the monitoring timer.}} \\
\hline M9109 (Note-2) & Step transition monitoring timer start(Corresponding to D9109) & & & & & \\
\hline \begin{tabular}{l}
M9110 \\
(Note-2)
\end{tabular} & Step transition monitoring timer start(Corresponding to D9110) & & & & & \\
\hline \begin{tabular}{l}
M9111 \\
(Note-2)
\end{tabular} & Step transition monitoring timer start(Corresponding to D9111) & & & & & \\
\hline \begin{tabular}{l}
M9112 \\
(Note-2)
\end{tabular} & Step transition monitoring timer start(Corresponding to D9112) & & & & & \\
\hline M9113 (Note-2) & Step transition monitoring timer start(Corresponding to D9113) & & & & & \\
\hline \begin{tabular}{l}
M9114 \\
(Note-2)
\end{tabular} & Step transition monitoring timer start(Corresponding to D9114) & & & & & \\
\hline M9180 & Active step sampling trace completion flag & \[
\begin{array}{|l|}
\hline \text { OFF } \\
\text { ON } \\
\hline
\end{array}
\] & Trace start Trace completion & \multicolumn{3}{|l|}{- Turns ON at completion of sampling trace of all specified blocks, and turns OFF at a sampling trace start.} \\
\hline M9181 & Active step sampling trace execution flag & \[
\begin{array}{|l|}
\hline \text { OFF T } \\
\text { ON } \\
\hline
\end{array}
\] & Trace not yet executed Trace being executed & \multicolumn{3}{|l|}{- Turns ON during execution of sampling trace, and turns OFF at completion or stop.} \\
\hline \begin{tabular}{l}
M9182 \\
(Note-2)
\end{tabular} & Active step sampling trace enable & \[
\begin{aligned}
& \text { OFF } \\
& \text { ON }
\end{aligned}
\] & Trace disable/stop Trace enable & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Select whether to enable or disable sampling trace execution. \\
ON : Sampling trace execution is enabled. \\
OFF : Sampling trace execution is disabled. \\
Turn it OFF during sampling trace execution to stop trace.
\end{tabular}} \\
\hline M9196 (Note-2) & Operation output at block stop & \[
\begin{aligned}
& \text { OFF } \\
& \text { ON }
\end{aligned}
\] & Coil output OFF Coil output ON & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Select the operation output at a block stop. \\
ON : The ON/OFF status of the coil used for the operation output of the step executed at a block stop is retained. \\
OFF : All coil outputs are turned OFF. (The operation output provided by the SET instruction is retained independently of whether M9196 is ON or OFF.)
\end{tabular}} \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \text { M9197 } \\
& \stackrel{\bullet}{\text { M9198 }}
\end{aligned}
\]} & \multirow{6}{*}{Fuse blown-I/O verify error indication switching} & \multicolumn{2}{|l|}{\multirow{6}{*}{ON/OFF combination of M9197 and M9198 is changed to switch indication.}} & \multicolumn{3}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
\begin{tabular}{|c|c|l|}
\hline M9197 & M9198 & \multicolumn{1}{|c|}{ Display Range } \\
\hline OFF & OFF & X/Y0 to 7F0 states \\
\hline ON & OFF & X/Y800 to FF0 states \\
\hline OFF & ON & X/Y1000 to 17F0 states \\
\hline ON & ON & X/Y1800 to 1FF0 states \\
\hline
\end{tabular} \\
- The I/O module numbers of the fuse blown module indication (D9100 to D9107) and I/O module verify error indication (D9116 to D9123) are changed. \\
- Indication is changed at END.
\end{tabular}}} \\
\hline & & & & & & \\
\hline M9199 & Online sampling trace/status latch data restoration & \[
\begin{aligned}
& \text { OFF } \\
& \text { ON }
\end{aligned}
\] & Data not restored Data restored & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Restores the set data stored in the CPU to enable resumption of sampling trace/status latch when it is executed. \\
- Turn M9199 ON when sampling trace/status latch is executed again. (Data need not be written again by peripheral device.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Device number & Signal name & Signal direction & Refresh cycle & Fetch cycle \\
\hline M9073 & PCPUWDT error flag & \multirow{7}{*}{PCPU \(\rightarrow\) SCPU} & \multirow{7}{*}{END} & \multirow[b]{7}{*}{} \\
\hline M9074 & PCOU ready completion flag & & & \\
\hline M9075 & Test mode flag & & & \\
\hline M9076 & External rapid stop input flag & & & \\
\hline M9077 & Manual pulse generator axis setting error flag & & & \\
\hline M9078 & Test mode request error flag & & & \\
\hline M9079 & Servo program setting error flag & & & \\
\hline
\end{tabular}

\section*{POINTS}
(1) All special relays, M, are turned OFF by turning the power, OFF, performing latch clear, or resetting with the RESET key switch.
When the RUN key switch is set to "STOP", the special relay settings are retained.
(2) The special relays marked "Note-1" in the table above remain "ON" even after a return to normal. They must therefore be turned OFF by using one of the following methods.
(a) Method using the user program

Insert the ladder block at right into the program and turn the reset execution command contact ON to clear the special relay.
(b) Method using a peripheral device

Perform a forced reset using the test function of the peripheral device.
For details on this operation, refer to the manual for the peripheral device.
(c) Turn the special relay OFF by setting the RESET key switch on the front panel of the CPU module to "RESET".

(3) The ON/OFF status of special relays marked "Note-2" in the table above is controlled by the sequence program.
(4) The ON/OFF status of special really marks "Note-3"in the tables above is controlled by the test mode for the peripheral device.
(5) The special relays marked "Note-4" are reset only when power is switched from OFF to ON.

\subsection*{3.2 Special Registers (SP.D)}

The special registers are data registers used for specific purposes in the programmable controller. Therefore, do not write data to the special registers in the program (with the exception of those whose numbers are marked \({ }^{(\text {Note-2) }}\) in the table).
Of the special relays, those from D9180 to D9199 are used for positioning control.
Table 3.2 Special Register List
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline D9000 & Fuse blown & Number of module with blown fuse & \begin{tabular}{l}
- When modules with a blown fuse are detected, the lowest I/O number of the detected modules is stored in hexadecimal in this special relay. \\
(Example: Blown fuses at the output modules Y 50 to 6 F ... " 50 " is stored in hexadecimal.) \\
For monitoring at a peripheral device, use hexadecimal display monitor operations. \\
(Cleared when the contents of D9100 are all "0".)
\end{tabular} \\
\hline D9002 & I/O unit verify error & I/O module verification error module number & \begin{tabular}{l}
- If I/O modules that do not match the registered data are detected when the power is turned on, the first I/O number of the lowest module number among the detected modules is stored in hexadecimal (the storage method is the same as for D9000). When monitoring with a peripheral device, use a hexadecimal display monitoring operation. \\
(Cleared when all contents of D9116 to D9123 are reset to zero.)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { D9004 } \\
& \text { (Note-1) }
\end{aligned}
\] & MINI link error & Parameter-set (1 to 8 modules) states are stored. & - Stores the MINI(S3) link error detection states of the loaded master modules. \\
\hline \[
\begin{aligned}
& \text { D9005 } \\
& \text { (Note-4) }
\end{aligned}
\] & AC DOWN counter & AC DOWN occurrence count & - 1 is added to the stored value each time the input voltage becomes \(80 \%\) or less of the rating while the CPU module is performing an operation, and the value is stored in BIN code. \\
\hline \[
\begin{gathered}
\text { D9008 } \\
\text { (Note-4) } \\
\hline
\end{gathered}
\] & Self-diagnostic error & Self-diagnostic error number & - 1 is added to the stored value when an error is found as a result of self-diagnosis, the error number, and the value is stored in BIN code. \\
\hline D9009 & Annunciator detection & F number at which external failure has occurred & \begin{tabular}{l}
- When one of F0 to 2047 is turned on by \(\square\) SET F
\(\square\) , the \(F\) number detected earliest among the F numbers which have been turned on is stored in BIN code. \\
- D9009 can be cleared by executing a RSTF or LEDR instruction. If another F number has been detected, the clearing of D9009 causes the next number to be stored in D9009.
\end{tabular} \\
\hline D9010 & Error step & Step number at which operation error has occurred & \begin{tabular}{l}
- If access to the module which has been set as a special module could not be made at a STOP \(\rightarrow\) RUN time, the module No. of the special module is stored. \\
- When an operation error occurs during execution of an application instruction, the step No. where the error occurred is stored in BIN cod, and thereafter, every time an operation error occurs the contents of D9010 are updated.
\end{tabular} \\
\hline D9011 & Error step & Step number at which operation error has occurred & - When an operation error occurs during execution of an application instruction, the step number at which the error occurs is stored in this register in BIN code. Since storage is executed when M9011 changes from OFF to ON, the contents of D9011 cannot be updated unless it is cleared by the user program. \\
\hline D9014 & I/O control mode & I/O control mode number & \begin{tabular}{l}
- The set control mode is represented as follows: \\
3: I/O in refresh mode
\end{tabular} \\
\hline
\end{tabular}

Table 3.2 Special Register List (Continued)

Table 3.2 Special Register List (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline \[
\begin{gathered}
\text { D9026 } \\
\text { (Note-2) }
\end{gathered}
\] & Clock data & Clock data (day, hour) & \begin{tabular}{l}
- The day and hour are stored in BCD code in D9026 as shown below.
В15.... в12811.... в8 в7 … в4 в3 … во \\
Example \\
: 31st, 10th hour H3110
\end{tabular} \\
\hline \[
\begin{gathered}
\text { D9027 } \\
\text { (Note-2) }
\end{gathered}
\] & Clock data & Clock data (minute, second) & \begin{tabular}{l}
- The minute and second are stored in BCD code in D9027 as shown below. \\
B15.... B12811.... B8 B7 … B4 B3 … B0 \\
Example \\
: 35ms, 48s \\
H3548
\end{tabular} \\
\hline \[
\begin{gathered}
\text { D9028 } \\
\text { (Note-2) }
\end{gathered}
\] & Clock data & Clock data (0, day of week) & \begin{tabular}{l}
- The day of week is stored in BCD code in D9028 as shown below. B15 B12B11 B8 B7 B4 B3 B0 \\
Example \\
: Friday \\
H0005 \\
" 0 " must be set here.
\end{tabular} \\
\hline D9035 & Extended file register & Used block No. & - The block No. of the extended file registers in current use is stored in BIN. \\
\hline D9036 & \multirow[t]{2}{*}{For specifying extended file register device number} & \multirow[t]{2}{*}{Device number for direct access to any device of extended file register} & - Using a BIN value, specify in two words of D9036 and D9037 the device number of the extended file register to be accessed directly. Specify any of the consecutive device numbers starting at R0 in block No. 1, regardless of the block No. \\
\hline D9037 & & & \\
\hline
\end{tabular}

Table 3.2 Special Register List (Continued)

Table 3.2 Special Register List (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline \[
\begin{aligned}
& \text { D9100 } \\
& \text { to } \\
& \text { D9107 }
\end{aligned}
\] & Fuse blown module & 16 point-based bit pattern of fuse blown modules & \begin{tabular}{l}
- Stores in a bit pattern the fuse-blown output module numbers (16 point increments). (When parameter setting was made, the preset numbers are used.) \\
- The fuse blown states of the output modules on remote stations are also detected. \\
- Turn ON/OFF M9197 and M9198 to change the displayed I/O module number range. \\
- The fuse-blown module data are cleared by turning OFF M9000 (fuse blown).
\end{tabular} \\
\hline \[
\begin{gathered}
\text { D9116 } \\
\text { to } \\
\text { D9123 }
\end{gathered}
\] & I/O module verify error & 16 point-based bit pattern of verify error modules & \begin{tabular}{l}
- Stores the I/O module numbers (16 point increments) when the I/O modules whose I/O module information is different from the registered information are detected at power-on. (When parameter setting was made, the preset I/O module numbers are used.) \\
- The I/O module information of remote stations is also detected. \\
- Turn ON/OFF M9197 and M9198 to change the displayed I/O module number range. \\
- The verify error data are cleared by turning OFF M9002 (verify error).
\end{tabular} \\
\hline D9124 & Annunciator detection quantity & Number of detected annunciators & \begin{tabular}{l}
- When one of F0 to 255 is turned on by an OUT F or SET F, 1 is added to the contents of D9124. \\
When the RSTF or LED R instruction is executed, 1 is subtracted from the contents of D9124. \\
(This may also be done with the INDICATOR RESET switch on the front of the CPU module.) \\
The number of annunciators that has been turned on by OUT F or SET F is stored in D9124: the maximum stored value is 8 .
\end{tabular} \\
\hline
\end{tabular}

Table 3.2 Special Register List (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Number & Name & Stored Data & \multicolumn{15}{|c|}{Explanation} \\
\hline \multirow{11}{*}{\[
\begin{gathered}
\text { D9125 } \\
\text { to } \\
\text { D9132 }
\end{gathered}
\]} & \multirow{11}{*}{Annunciator detection number} & \multirow{11}{*}{Annunciator detection number} & \multicolumn{15}{|l|}{\begin{tabular}{l}
- When F numbers in the range F0 to 2047 are turned on by OUT F or SET F they are entered in D9125 to D9132 in ascending order of register numbers. An F number which is turned off by RST F is erased from D9125 to D9132, and the contents of the data registers following the one where the erased F number was stored are each shifted to the preceding data register. When the LEDR instruction is executed, the contents of D9125 to D9132 are shifted upward by one. \\
(This may also be done with the INDICATOR RESET switch on the front of the CPU module.) \\
When there are 8 annunciator detections, a 9th one is not stored in D9125 to D9132 even if detected. \\
SET SET SET RST SET SET SET SET SET SET SET \\
F50 F25 F99 F25 F15 F70 F65 F38 F110 F151 F210 LEDR
\end{tabular}} \\
\hline & & & D9009 & 0 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 99 & ... detection number \\
\hline & & & D9124 & 0 & 1 & 2 & 3 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 8 & 8 & \(\cdots\)... detection \(\begin{aligned} & \text { quantity }\end{aligned}\) \\
\hline & & & D9125 & 0 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 99 & \\
\hline & & & D9126 & 0 & 0 & 25 & 25 & 99 & 99 & 99 & 99 & 99 & 99 & 99 & 99 & 15 & \\
\hline & & & D9127 & 0 & 0 & 0 & 99 & 0 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 70 & \\
\hline & & & D9128 & 0 & 0 & 0 & 0 & 0 & 0 & 70 & 70 & 70 & 70 & 70 & 70 & 65 & detection \\
\hline & & & D9129 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 65 & 65 & 65 & 65 & 65 & 38 & number \\
\hline & & & D9130 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 38 & 38 & 38 & 38 & 110 & \\
\hline & & & D9131 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 110 & 110 & 110 & 151 & \\
\hline & & & D9132 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 151 & & 210 & \\
\hline
\end{tabular}

\section*{POINTS}
(1) All special register data is cleared by the power-off, latch clear, and reset operations. The data is retained when the RUN/STOP key switch is set to STOP.
(2) The contents of the special relays marked "Note-1" in the table above are not cleared even after the normal status is restored. To clear the contents, use one of the following methods:
(a) Using a user program

Insert the ladder block shown at right into the program and turn on the clear execution command contact to clear the contents of the register.
(b) Using a peripheral device

Using the test function of a peripheral device, set the register to "0" by using current value change or forced reset.
For details on the operation involved, refer to the manual for the relevant peripheral device.
(c) Set the special register to " 0 " by setting the RESET key switch on the front of the CPU to the RESET position.

(3) For special registers marked "Note-2", data is written in the sequence program.
(4) For the special registers marked "Note-3", data are written in the test mode of the peripheral device.
(5) The special registers marked "Note-4" are cleared only when power is switched from OFF to ON.

Table 3.2 Special Register List (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Number & Name & Stored Data & Explanation \\
\hline D752 & Manual pulse generator 1 (P1) smoothing magnification setting area & & \begin{tabular}{l}
- Stores the smoothing time constant of the manual pulse generator. \\
- The smoothing time constant is calculated by the following expression. Smoothing time constant \((\mathrm{t})=(\) smoothing magnification +1\() \times 56.8\) [ms] Note that the setting range of the smoothing magnification is 0 to 59 .
\end{tabular} \\
\hline D753 & Manual pulse generator 2 (P2) smoothing magnification setting area & Manual pulse generator smoothing magnification setting area & \\
\hline D754 & Manual pulse generator 3 (P3) smoothing magnification setting area & & \\
\hline \[
\begin{gathered}
\text { D776 } \\
\text { to } \\
\text { D791 }
\end{gathered}
\] & Axis 1 to 32 limit switch output status storing area & \begin{tabular}{l}
Limit switch output status storing area \\
1: ON \\
0 : OFF
\end{tabular} & \begin{tabular}{l}
- Stores 1 or 0 to indicate the output status (ON/OFF) to the limit switch output AY42 set on the peripheral device. \\
1: ON \\
0 : OFF \\
- May be used to export the limit switch output data in a sequence program. \\
Each bit of D776 to D791 stores \(1 / 0\). \\
1) \(1: \mathrm{ON}\) \\
2) \(0: \mathrm{OFF}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\text { D792 } \\
\text { to } \\
\text { D799 }
\end{gathered}
\] & Servo amplifier type & Servo amplifier type & \begin{tabular}{l}
- Stores the servo amplifier type specified in the system settings at power-on or rest. \\
b15 to b12 b11 to b8 b7 to b4 b3 to b0
\end{tabular} \\
\hline \[
\begin{gathered}
\text { D9182 } \\
\text { to } \\
\text { D9183 }
\end{gathered}
\] & Test mode request error & Test mode request error & \begin{tabular}{l}
- Stores the starting axis data when the test mode request error flag (M9078) turns ON. \\
\(\begin{array}{llllllllllll}\text { b15 } & \text { b14 } & \text { b13 } & \text { b12 } & \text { b11 } & \text { b10 } & \text { b9 } & \text { b8 } & \text { b7 } & \text { b6 } & \text { b5 } & \text { b4 } \\ \text { b3 } & \text { b2 } & \text { b1 } & \text { b0 }\end{array}\) \\
D9182 \\
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Axis 16 & Axis 15 & Axis 14 & Axis 13 & Axis 12 & Axis 11 & Axis 10 \\
Axis 9
\end{tabular} \\
Axis 5 \\
Axis 2 Axis 1 \\
D9183 \\
Axis 32 Axis 31 Axis 30 Axis 29 Axis 28 Axis 27 Axis \(26 \mid\) Axis 25 \\
Stores starting/stopping state of each axis. \\
\(\cdot 0\) : Stopping \\
- 1: Starting
\end{tabular} \\
\hline
\end{tabular}

Table 3.2 Special Register List (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Number & Name & Stored Data & \multicolumn{2}{|r|}{Explanation} \\
\hline \multirow{11}{*}{D9184} & \multirow{11}{*}{Cause of PCPU
error} & \multirow{11}{*}{PCPU WDT error number} & - The PCPU WDT errar & abled below are stored in D9184. \\
\hline & & & Error Code & Error Cause \\
\hline & & & 1 & PCPU software fault 1 \\
\hline & & & 2 & PCPU excessive operation frequency \\
\hline & & & 3 & PCPU software fault 2 \\
\hline & & & 30 & Hardware fault between PCPU and SCPU \\
\hline & & & \[
\begin{aligned}
& 100 \text { to } 107 \\
& 110 \text { to } 117 \\
& 120 \text { to } 127 \\
& 130 \text { to } 137 \\
& 140 \text { to } 147
\end{aligned}
\] & \begin{tabular}{l}
AC motor drive module CPU fault \\
Indicates the slot No.(0 to 7) where the AC motor drive module with the fault is loaded. \\
Indicates the stage No. of the base on which the AC motor drive module with the fault is loaded. \\
0 : CPU base \\
1: Extension base 1st stage \\
2: Extension base 2nd stage \\
3: Extension base 3rd stage \\
4: Extension base 4th stage
\end{tabular} \\
\hline & & & \[
\begin{aligned}
& 200 \text { to } 207 \\
& 210 \text { to } 217 \\
& 220 \text { to } 227 \\
& 230 \text { to } 237 \\
& 240 \text { to } 247
\end{aligned}
\] & \begin{tabular}{l}
Motion CPU base/extension base-loaded module hardware fault \\
Indicates the slot No.(0 to 7) where the module with the fault is loaded. \\
Indicates the stage No. of the base on which the module with the fault is loaded. \\
0 : CPU base \\
1: Extension base 1st stage \\
2: Extension base 2nd stage \\
3: Extension base 3rd stage \\
4: Extension base 4th stage
\end{tabular} \\
\hline & & & 250 to 253 & Separated servo amplifier (MR-ם-B) interface hardware fault \\
\hline & & & 300 & PCPU software fault 3 \\
\hline & & & 301 & 21 or more programs were started simultaneously by the CPSTART instruction of 8 or more points. Up to 20 programs may be started simultaneously by the CPSTART instruction of 8 or more points. \\
\hline
\end{tabular}

Table 3.2 Special Register List (Continued)

\section*{APPENDIX4 EXAMPLE PROGRAMS}

\subsection*{4.1 Reading M Codes}

An example of a program for reading an M code on completion of positioning start or on completion of positioning is shown here.
The distinction between positioning start completion and positioning completion is made with the following signals.
- Positioning start completed . M2400+20n (positioning start completed signal)
- Positioning completed .M2401+20n (positioning completed signal)

\section*{[Program Example]}
(1) A program that outputs the \(M\) code for axis 1 from Y000 to Y00F to an external destination on completion of positioning start and after conversion to BCD code, is shown here.

(2) A program that outputs the M code for axis 1 from Y 000 to Y 00 F to an external destination on completion of positioning and after conversion to BCD code, is shown here.

\subsection*{4.2 Error Code Reading}

A program that reads the error code when an error occurs is shown here.
The following signals are used to determine whether or not an error has occurred:
- Minor errors, major errors............Error detection signal (M2407+20n)
- Servo errors.

Servo error detection signal (M2408+20n)

\section*{POINT}
(1) The following delay occurs between the leading edge (OFF \(\rightarrow \mathrm{ON}\)) of M2407+20n/M2408+20n and storage of the error code.
(a) If the sequence program scan time is less than 80 ms , there will be a delay of up to 80 ms .
(b) If the sequence program scan time is longer than 80 ms , there will be a delay of up to one scan time.
Program so that error code reading is executed after sufficient time has elapsed for error codes to be written in the various error code storage areas after M2407+20n/M2408+20n comes ON.

\section*{[Program Example]}
(1) A program that converts the error code to BCD and outputs it to Y000 to Y00F when an axis 1 error occurs (minor error, major error) is shown here.

\subsection*{4.3 Magnitude Comparison and Four Fundamental Operations of 32-Bit Monitor Data}

When a machine value, real current value or deviation counter value is used to perform magnitude comparison or four fundamental operations, the value must be transferred to another device memory once and the device memory of the transfer destination be used to perform processing as described below.
(1) Magnitude comparison example
(a) To set the device when the machine value has become more than the set value

1) S, D1, D2 and D3 indicate the following.
\(S\) : Machine value
D1 : Device memory for temporary storage
D2 : Set value for magnitude comparison
D3 : Device for setting magnitude comparison result
(b) When one piece of monitor data is referred to many times to perform comparison processing, intended operation may not be performed if the monitor data is transferred every processing as shown in program example 1. In program example 1, neither Y1 nor Y2 may turn ON. (This also applies to the case of 16-bit monitor data.)
This is because the \(S\) value varies asynchronously with the sequencer scan. To perform such processing, transfer the monitor data to another device memory once, and after that, use that value to perform comparison processing as shown in program example 2.
[Program example 1]

[Program example 2]

1) S, D1, D2, Y1 and Y2 indicate the following.
\(S\) : Machine value
D1: Device memory for temporary storage
D2 : Set value for magnitude comparison
Y1 : Magnitude comparison result output device (Result: more than)
Y2 : Magnitude comparison result output device (Result: Equal to or less than)
(2) Four fundamental operations example

To divide the real current value by the set value

1) S, D1, D2 and D3 indicate the following.

S : Real current value
D1: Device memory for temporary storage
D2 : Division
D3 : Operation result storage device

\section*{APPENDIX 5 SETTING RANGE OF INDIRECTLY DESIGNATED DEVICES}

All settings by servo programs (positioning address, commanded speed, M code, etc.) can be designated indirectly by sequencer devices, excluding the axis numbers.
(1) Device range

The number of device words and device range in indirect designation are shown below.

(Note) Setting cannot be made in the synchronous encoder axis area.

\section*{POINT}

Be sure to designate even-numbered devices for 2-word designation items. Be sure to use the \(\mathrm{DMOV}(\mathrm{P})\) instruction when setting data in these devices by sequence programs.
(2) Device data fetch

Data for indirectly designated devices is fetched by the PCPU at the start of the servo program.
For this reason, set data in the devices before starting the servo program, and never change the devices unless servo program start is complete.
The following describes the procedures by start method for setting data in devices and the points to note.
\begin{tabular}{|c|c|c|}
\hline Start method & Setting method & Notes \\
\hline Start by SVST instruction & Designate data in devices. Start by SVST. & Don't change the indirectly designated device \\
\hline Automatic start by cancel \& start & \begin{tabular}{l}
Set data in the indirectly designated device chosen by the start program. \\
Turns the cancel command device ON.
\end{tabular} & until the positioning start completion signal of the start axis goes ON. \\
\hline Designating loop (FOR - NEXT) point data in the CPSTART instruction indirectly & \begin{tabular}{l}
Designate initial command data in the indirectly designated device. \\
Start by SVST (or set the cancel command device to ON). \\
Read the value of constant speed control data set pointer of the started axis, and update the data fetched by PCPU.
\end{tabular} & For details, see the positioning signal data register "Monitoring data Area". \\
\hline
\end{tabular}

\section*{APPENDIX 6 PROCESSING TIMES}

The following tables list the processing time of each instruction for positioning control in the servo system CPU.
(1) Motion operation cycle (ms)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CPU & \multicolumn{3}{|c|}{ A273UHCPU } & \multicolumn{3}{c|}{ A173UHCPU(-S1) } \\
\hline Number of set axes (SV22) & \(\mathbf{1}\) to \(\mathbf{8}\) & \(\mathbf{9}\) to 18 & \(\mathbf{1 9}\) to \(\mathbf{3 2}\) & \(\mathbf{1}\) to \(\mathbf{1 2}\) & \(\mathbf{1 3}\) to \(\mathbf{2 4}\) & \(\mathbf{2 5}\) to \(\mathbf{3 2}\) \\
\hline Number of set axis (SV13) & \(\mathbf{1}\) to \(\mathbf{1 2}\) & \(\mathbf{1 3}\) to 24 & \(\mathbf{2 5}\) to \(\mathbf{3 2}\) & \(\mathbf{1}\) to 20 & \(\mathbf{2 1}\) to 32 & - \\
\hline Operation cycle & 3.5 ms & 7.1 ms & 14.2 ms & 3.5 ms & 7.1 ms & 14.2 ms \\
\hline
\end{tabular}
(2) SCPU instruction processing time (\(\mu \mathrm{s}\))
\begin{tabular}{|l|l|c|}
\hline \multicolumn{2}{|c|}{ Number of set axes } & \(\mathbf{1}\) to 32 \\
\hline \multirow{3}{*}{ SVST } & 1 axis started & 35 \\
\cline { 2 - 4 } & 2 or 3-axes started & 70 \\
\cline { 2 - 4 } & Error & 150 \\
\hline CHGV & 20 \\
\hline CHGA & 25 \\
\hline CHGT & 20 \\
\hline END & & Max. 5000 \\
\hline
\end{tabular}
(3) CPU processing time (ms)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ CPU } & \multicolumn{3}{|c|}{ A273UHCPU } & \multicolumn{3}{c|}{ A173UHCPU(-S1) } \\
\hline \multicolumn{1}{|c|}{ Number of set axes (SV22) } & \(\mathbf{1}\) to \(\mathbf{8}\) & \(\mathbf{9}\) to \(\mathbf{1 8}\) & \(\mathbf{1 9}\) to \(\mathbf{3 2}\) & \(\mathbf{1}\) to \(\mathbf{1 2}\) & \(\mathbf{1 3}\) to \(\mathbf{2 4}\) & \(\mathbf{2 5}\) to \(\mathbf{3 2}\) \\
\hline \multicolumn{1}{|c|}{ Number of set axis (SV13) } & \(\mathbf{1}\) to \(\mathbf{1 2}\) & \(\mathbf{1 3}\) to \(\mathbf{2 4}\) & \(\mathbf{2 5}\) to \(\mathbf{3 2}\) & \(\mathbf{1}\) to \(\mathbf{2 0}\) & \(\mathbf{2 1}\) to \(\mathbf{3 2}\) & - \\
\hline \begin{tabular}{l}
Servo program start processing time \\
(Note-1)
\end{tabular} & 4 to 11 & 10 to 18 & 14 to 21 & 4 to 11 & 10 to 18 & 14 to 21 \\
\hline Speed change response & 0 to 4 & 0 to 8 & 0 to 14 & 0 to 4 & 0 to 8 & 0 to 14 \\
\hline \begin{tabular}{l}
Torque limit value change response
\end{tabular} & 0 to 4 \\
\hline \begin{tabular}{l}
Simultaneous start processing time (Note- \\
2)
\end{tabular} & 7 to 17 & 10 to 24 & 14 to 28 & 7 to 17 & 10 to 24 & 14 to 28 \\
\hline \begin{tabular}{l}
Time from PLC ready flag (M2000) ON to \\
PCPU ready flag (M9074) ON
\end{tabular} & 8 to 100 & 90 to 400 & 8 to 800 & 8 to 100 & 90 to 400 & 100 to \\
800
\end{tabular}
(Note-1): The FEED instruction varies greatly depending on the condition (whether other axes are operating or being stopped).
(Note-2): This processing time varies depending on the commands to be started simultaneously. Use this time merely for reference.

For other sequence program instruction processing times, refer to the ACPU Programming Manual.
(4) Axis statuses

(5) Axis command signals

(6) Axis monitor devices

"END" in the Refresh Cycle field indicates " 50 ms " or "PLC program scan time", which is longer.
(3) Control change registers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Axi } \\
\text { s } \\
\text { No. }
\end{gathered}
\] & \begin{tabular}{l}
Device \\
Number
\end{tabular} & \multicolumn{11}{|c|}{Signal Name} \\
\hline 1 & D640, D641 & & & & & & & & & & & \\
\hline 2 & D642, D643 & & Signal & Name & & fresh cy & & & port cyc & & & \\
\hline 3 & D644, D645 & & Signal & Name & Num & er of set & axes & Num & er of set & axes & & \\
\hline 4 & D646, D647 & - & SV13 & A173UHCPU & 1 to 20 & 21 to 32 & - & 1 to 20 & 21 to 32 & - & Unit & Signal \\
\hline 5 & D648, D649 & , & SV1 & A273UHCPU & 1 to 12 & 13 to 24 & 25 to 32 & 1 to 12 & 13 to 24 & 25 to 32 & & direction \\
\hline 6 & D650, D651 & & SV2 & A173UHCPU & 1 to 12 & 13 to 24 & 25 to 32 & 1 to 12 & 13 to 24 & 25 to 32 & & \\
\hline 7 & D652, D653 & & SV & A273UHCPU & 1 to 8 & 9 to 18 & 19 to 32 & 1 to 8 & 9 to 18 & 19 to 32 & & \\
\hline 8 & D654, D655 & 0 & Feed curr & t value & & & & & At start & & Command & SCPU \(\rightarrow\) PCPU \\
\hline 9 & D656, D657 & 1 & Feed curr & value & & & & & At start & & unit & SCPU \(\rightarrow\) PCPU \\
\hline 10 & D658, D659 & & & & & & & & & & & \\
\hline 11 & D660, D661 & & & & & & & & & & & \\
\hline 12 & D662, D663 & & & & & & & & & & & \\
\hline 13 & D664, D665 & & & & & & & & & & & \\
\hline 14 & D666, D667 & & & & & & & & & & & \\
\hline 15 & D668, D669 & & & & & & & & & & & \\
\hline 16 & D670, D671 & & & & & & & & & & & \\
\hline 17 & D672, D673 & & & & & & & & & & & \\
\hline 18 & D674, D675 & & & & & & & & & & & \\
\hline 19 & D676, D677 & & & & & & & & & & & \\
\hline 20 & D678, D679 & & & & & & & & & & & \\
\hline 21 & D680, D681 & & & & & & & & & & & \\
\hline 22 & D682, D683 & & & & & & & & & & & \\
\hline 23 & D684, D685 & & & & & & & & & & & \\
\hline 24 & D686, D687 & & & & & & & & & & & \\
\hline 25 & D688, D689 & & & & & & & & & & & \\
\hline 26 & D690, D691 & & & & & & & & & & & \\
\hline 27 & D692, D693 & & & & & & & & & & & \\
\hline 28 & D694, D695 & & & & & & & & & & & \\
\hline 29 & D696, D697 & & & & & & & & & & & \\
\hline 30 & D698, D699 & & & & & & & & & & & \\
\hline 31 & D700, D701 & & & & & & & & & & & \\
\hline 32 & D702, D703 & & & & & & & & & & & \\
\hline
\end{tabular}
(8) Common devices

"END" in the Refresh Cycle field indicates " 50 ms " or "PLC program scan time", which is longer.

"END" in the Refresh Cycle field indicates "50ms" or "PLC program scan time", which is longer.
(9) Common devices

(10) Special Register
\begin{tabular}{|c|c|c|c|c|}
\hline Device No. & Signal Name & Signal Direction & Refresh Cycle & Fetch Cycle \\
\hline M9073 & PCPU WDT error flag & \multirow{7}{*}{PCPU \(\rightarrow\) SCPU} & \multirow{7}{*}{END} & \multirow[t]{7}{*}{} \\
\hline M9074 & PCPU REDAY-completed flag & & & \\
\hline M9075 & In-test-mode flag & & & \\
\hline M9076 & External emergency stop input flag & & & \\
\hline M9077 & Manual pulse generator axis setting error flag & & & \\
\hline M9078 & Test mode request error flag & & & \\
\hline M9079 & Servo program setting error flag & & & \\
\hline
\end{tabular}
"END" in the Refresh Cycle field indicates " 50 ms " or "PLC program scan time", which is longer.
(11) Special Register

\section*{APPENDIX 7 ELECTRONIC GEAR SETTING EXAMPLES}

In addition to the electronic gear setting method explained in Section 4.2 Fixed Parameters of this manual, this section provides various electronic gear setting examples.
Use them as reference for parameter setting.
Basic concept of the electronic gear
The basic concept of the electronic gear is represented by the following expression.
\[
\text { Electronic gear }=\frac{\mathrm{AP} \text { (number of pulses per motor revolution) }}{\Delta \mathrm{S} \text { (machine travel value per motor revolution) }}
\]

Replacing the electronic gear by the actually set AP, AL and Am gives:
\(\frac{\text { Number of pulses per motor revolution (AP) }}{\text { Travel value per motor revolution (AL) } \times \text { unit magnification (AM) }}=\frac{\mathrm{AP} \text { (number of pulses per motor revolution) }}{\Delta \mathrm{S} \text { (machine travel value per motor revolution) }}\)

Therefore, set the AP, AL and AM values with which the above relational expression will hold.
However, since the values that may be set as AP, AL and Am have their permissible ranges, the values calculated from the above relational expression must be brought within the AP, AL and AM setting ranges.
(1) For ball screw + reduction gear

When the ball screw pitch is 10 mm , the motor is the HC-MF (8192PLS/rev) and the reduction ratio of the reduction gear is \(9 / 44\)

First, find how many millimeters the load (machine) will travel (\(\Delta \mathrm{S}\)) when the motor turns one revolution (AP).

AP (number of pulses per motor revolution) \(=8192\) (PLS)
\(\Delta \mathrm{S}\) (machine travel value per motor revolution)= ball screw pitch \(\times\) reduction ratio

When the control unit is mm, the minimum command unit is \(0.1 \mu \mathrm{~m}\).

Substitute this for the above relational expression.
At this time, make calculation with the reduction ratio \(9 / 44\) remaining as a fraction.
\[
\begin{aligned}
\frac{A P}{\Delta S}=\frac{A P}{A L \times A M} & =\frac{8192(P L S)}{10000.0(\mu \mathrm{~m}) \times 9 / 44} \\
& =\frac{8192(\mathrm{PLS}) \times 44}{10000.0(\mu \mathrm{~m}) \times 9}
\end{aligned}
\]
\[
\begin{aligned}
\frac{A P}{A L \times A M} & =\frac{8192(P L S) \times 44}{10000.0(\mu \mathrm{~m}) \times 9} \\
& =\frac{360448}{90000.0}
\end{aligned}
\]

Here, reduce the above result since the Ap setting must be made not more than 65535.
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{45056}{11250.0}\)
Next, since the AL setting range is up to 6553.5 , set 1125.0 as AL and multiply it by 10 with Am.
\(\frac{A P}{A L \times A M}=\frac{45056(A P)}{1125.0(A L) \times 10(A M)}\)
Thus, AP, AL and AM to be set are as follows.

AP=45056
\(A L=1125.0\)
AM=10
(2) When PULSE (pulse) is set as the control unit

When using PULSE (pulse) as the control unit, set the electronic gear as
follows.
\(\mathrm{AP}=\) number of pulses per motor revolution
\(A L=\) number of pulses per motor revolution
\(A M=1\)
For example, when the motor is the HC-MF (8192PLS/rev)
AP=8192
AL=8192
\(A M=1\)
(3) When degree is set as the control unit for a rotary axis

When the rotary axis is used, the motor is HC-SF (16384PLS/rev) and the reduction ratio of the reduction gear is \(3 / 11\)

Reduction gear 3/11

First, find how many degrees the load (machine) will travel \((\Delta S)\) when the motor turns one revolution (AP).
AP (number of pulses per motor revolution) \(=16384\) (PLS)
\(\Delta S\) (machine travel value per motor revolution) \(=360.00000\) (degree) \(\times\) reduction
\[
=16384(\text { PLS }) \times 3 / 11
\]

Substitute this for the above relational expression.
At this time, make calculation with the reduction ratio \(3 / 11\) remaining as a fraction.
\[
\begin{aligned}
\frac{A P}{\Delta S}=\frac{A P}{A L \times A M} & =\frac{16384(P L S)}{360.00000(\text { degree }) \times 3 / 11} \\
& =\frac{16384(\text { PLS }) \times 11}{360.00000(\text { degree }) \times 3} \\
& =\frac{180224}{1080.00000}
\end{aligned}
\]

Here, reduce the above result since the AP setting must be made not more than 65535.
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{11264}{67.50000}\)
Next, since the AL setting range is up to 0.65535 , set 0.06750 as AL and multiply it by 1000 with Am.
\(\frac{A P}{A L \times A M}=\frac{11264(A P)}{0.06750(A L) \times 1000(A M)}\)
Thus, AP, AL and AM to be set are as follows.
AP=11264
\(A L=0.06750\)
AM=1000
(4) When mm is set as the control unit for conveyor drive (calculation including \(\pi\)) When the belt conveyor drive is used, the conveyor diameter is 135 mm , the pulley ratio is \(1 / 3\), the motor is \(\mathrm{HC}-\mathrm{SF}\) (\(16384 \mathrm{PLS} / \mathrm{rev}\)) and the reduction ratio of the reduction gear is \(7 / 53\)

As the travel value of the conveyor is used to exercise control, set mm as the control unit.
First, find how many millimeters the load (machine) will travel \((\Delta \mathrm{S})\) when the motor turns one revolution (AP).

AP (number of pulses per motor revolution) \(=16384\) (PLS)
\(\Delta S\) (machine travel value per motor revolution) \(=135000.0(\mu \mathrm{~m}) \times \pi \times\) reduction
ratio
\(=135000.0(\mu \mathrm{~m}) \times \pi \times 7 / 53 \times 1 / 3\)
Substitute this for the above relational expression.
At this time, make calculation with the reduction ratio \(7 / 53 \times 1 / 3\) remaining as a fraction.
\[
\begin{aligned}
\frac{\mathrm{AP}}{\Delta \mathrm{~S}}=\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}} & =\frac{16384(\mathrm{PLS})}{135000.0(\mu \mathrm{~m}) \times \pi \times 7 / 53 \times 1 / 3} \\
& =\frac{16384(\mathrm{PLS}) \times 53 \times 3}{135000.0(\mu \mathrm{~m}) \times \pi \times 7}
\end{aligned}
\]

Here, make calculation on the assumption that \(\pi\) is equal to 3.14159 .
\(\frac{A P}{\Delta S}=\frac{A P}{A L \times A M}=\frac{2605056}{2968802.6}\)

Here, reduce the above result since the AP setting must be made not more than 65535.
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{1302528}{1484401.3}\)
The above fraction cannot be reduced further.
Here, since the AP setting range is not more than 6553.5 and the AL setting range is not more than 6553.5, ignore the least significant digits of both the denominator and numerator as 0 .
Then,
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{1302500}{1484400.0}\)
Further reduce the fraction.
\(\frac{\mathrm{AP}}{\mathrm{AL} \times \mathrm{AM}}=\frac{2605}{2968.8}\)
Thus, AP, AL and AM to be set are as follows.
AP=2605
AL=2968.8
\(A M=1\)
This setting will produce an error for the true machine value, but it cannot be helped. This error is as follows.
\(\left(\frac{29688 / 2605}{29688026 / 2605056}-1\right) \times 100=0.002(\%)\)
It is equivalent to an about 0.02 mm error in continuous 1 m feed.```

