
MITSUBISHI

模拟数字变换模块A1S64AD

用户参考手册

※使用说明书的编号印在本说明书封底的左下方。

印刷日期	※使用说明书编号		修	改	内	容	-
1995年11月	SH(NA)-080207C-A	第一版印刷			********		
		P				* ; **********************************	or socialist To Total Social S
						•	
							~
		ı.					
			197	9			
							r
	İ						
					5		
						E	
						ä	
	1						
							27
	ļ						
	1						
	ä-						
	<u> </u>						

本手册不对工业所有权及其他权利的实施起保证作用,也不是许诺实施权的文件。此外,对于因使用本手册中所收录的内容而引起的工业所有权上的各种问题,本公司不负任何责任。

● 安全上的注意事项 ●

(在使用前, 务请先阅读本部分内容)

在使用此产品时,请仔细阅读本手册以及本手册上所介绍的各关联手册,同时,还要充分注意安全,正确地进行使用。

下面所述的注意事项仅是涉及本产品的有关内容。有关程控系统安全上的注意事项,请参照CPU 单元的用户手册。

这里所言的●安全上的注意事项●,按照其重要程度分为"危险"、"注意"两类。

① 危险

如使用失误,可能会引起死亡或严重伤害等危险事故的有关事项。

注意

如使用失误,可能会引起中等程度或轻微伤害等危险事故,或者仅引起财物损失的有关事项。

但是,即使是归纳在注意中的事项,根据当时情况的不同也可能会导致重大事故。

因此, 两者都包含了重要的内容, 请务必遵守!

本用户手册应妥善保管,在必要时能随手取出阅读。而且,应随同产品交给最终用户。

【设计上的注意事项】

请不要将控制线及通信电缆与主电路及动力电缆等包扎在一起或靠得很近。请以相隔100mm以上为大致标准。

否则,可能因噪声而引起误动作。

【安装上的注意事项】

⚠注意

- 请在手册上规定的一般规格环境下使用程控器。 如在一般规格范围以外的环境下使用,可能会引起电击、火灾、误动作、产品损伤或劣化等事故。
- 请将模块下部的固定用突肩确实插入底座组件上的固定孔内。如模块安装不正确则会引起误动作、故障、掉落等事故。

【布线上的注意事项】

⚠注意

- 务必将AG端子接地,接地应符合程控器专用的等级3以上。 否则,可能会引起误动作。
- 布线到程控器上时,请先确认产品的额定电压和端子排列,然后再正确地进行。 如接到不符合额定电压的电源或布线错误,则会引起火灾及故障等。
- ➡ 端子螺钉请拧紧到规定的扭矩。如端子螺钉松动,则会引起短路、火灾、误动作等事故。
- 動 请注意,不要让切屑及电线头等异物进入组件内。否则,会引起火灾、故障、误动作等事故。

【起动、保养时的注意事项】

①危险

- 在通电中请不要触碰端子。否则,可能会引起误动作。
- 请将电源关断之后再进行清洁及增拧端子螺钉等作业。在通电中进行上述作业可能会引起组件故障及误动作等。

⚠注意

- 请勿分解、改装各模块。 否则会引起故障、误动作、伤害及火灾等事故。
- 模块的连接、脱开,务请在关断电源后进行。 如在通电中进行,则会引起模块故障及误动作等。
- 在电流输入范围的设定情况下输入电压时,可能会引起故障。

【报废时的注意事项】

<u>⚠</u>注意

● 将产品报废时,请它作为工业废料处理。

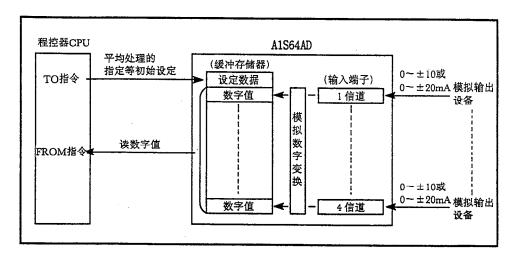
前 盲

承蒙购置三菱通用程控器MELSEC系列,深表感谢!

在开始使用之前,务请仔细阅读本手册,请在充分理解A系列程控器功能、性能的基础上,正确地予以使用。

此外,恳望将本手册随同产品交给最终用户。

目 录


第1:	章	概	要	1-	· 1
1.1	特	点		1-	1
		• • • • • • • • • • • • • • • • • • • •	·	_	
第2	章	系统材	9成	2-	- 1
		.1			
第3	草.	规格	3-1~	<u>-3-1</u>	17
3.1	 #	砂规格		3 —	1
				-	_
3.3	输え	入输出	变换特性	3-	3
3.3	3.1	电压轴	俞入特性	3-	4
3.3	3.2	电流轴	俞入特性	3 <i>-</i>	5
3.3	3.3	补偿·	· 增益设定与数字输出值的关系	3-	6
3.4	功能	能一览		3-	8
3.5	最力	大变换	速度	3-	9
3.5	5.1		道的变换速度		
3.5	5.2	执行F	ROM/TO指令对最大变换速度的影响	3-	9
3.6	程技	空器CP	U的输入输出信号	3-	10
3.6	5.1	输入轴	俞出信号一览	3-	10
3.6	5.2	输入轴	俞出信号的功能	3-	11
3.7	缓冲	中存储	理	3-	12
3.7	'.1	缓冲在	字储器的地址分配	3-	12
3.7	.2		E换允许·禁止的设定		
3.7	7.3	取样如	上理/平均处理的设定	3-	14
3.7	.4	数字轴	俞出值	3-	16
3.7	7.5	写数挑	居出错代码	3-	16
3.7	.6	A/D弹	E换结束标志	3 —	17
3.7	7.7	分辨3	室的设定	3-	17
第4:	章	运行前	前的设定和操作步骤 4-1/	~4-	-6
210 1		~	11 11 11 2 11		<u> </u>
4.1	使月	用上的	注意事项	4-	1
			名称	-	-
	-			-	_
			2/2		
	ł. I	-	上的注意事项	-	_
	l.2				
4.5	保家		查		
	- 1 - 1			_	

第 5 章 编程	5-1~5-4
5.1 编程步骤 5.2 读写的基本程序	5- 1
5.2 读写的基本程序	5- 2
5.3 初始设定程序和读数字输出值程序举例	5- 3
第6章 故障排除	6-1~6-2
6.1 出错代码一览	
6.1 出错代码一览 6.2 故障排除	6- 1
6.2.1 A1S64AD的RUN发光二极管闪亮的场合	6— 2
	6— 2
6.2.3 数字输出值读不出的场合	6- 2
附录	附−1~附−2

第1章 概 要

本用户手册就有关与MELSEC-A系列之CPU单元(下面简称为程控器CPU)组合使用的A1S64AD型模拟/数字变换模块(下面简称为A1S64AD)的规格、使用、编程方法等进行说明。

A1S64AD是能够将来自程控器外部的模拟信号(电压或电流输入)变换成数字值的模块,这种数字值是带16位符号的BIN数据。

1.1 特点

A1S64AD具有下述特点。

(1) 用1个模块可以进行4个信道的A/D变换

1个A1S64AD模块能够进行4个信道的A/D变换。 此外,还能分别对各个信道进行电压输入、电流输入的选择。

(2) 具有高达1/12000的分辨率(全部信道)

利用分辨率设定功能,能够将数字值的分辨率设定在1/4000、1/8000、1/12000中的任一档位,从而能够获得高分辨率的数字值。

- (3) 可以进行指定时间或次数的平均处理(各个信道)
 - ① A/D变换时输出数字值的取样处理方式
 - ② 设定被指定平均处理的信道之A/D变换的次数或时间,把此平均值作为数字值输出,而且能够分别对各信道选择这种平均处理方式.

(4) 可以设定变换允许/禁止(各个信道)

可以对每个信道设定A/D变换允许/禁止,把不使用的信道设定在变换禁止,能够缩短变换时间。

(5) 没有电位器而可以调整补偿/增益值(各个信道)

补偿值和增益值的调整,只需输入要设定的电压或电流,把设定开关置于ON位置即可。

第2章 系统构成

(1) 适用的CPU

· A1SJCPU · A1SCPU · A2SCPU · A2USCPU(S1) · A2ASCPU · A52GCPU(T21B)

(2) 安装片数

只要在适用CPU的输入输出点范围之内,使用的模块数没有限制。

(3) 安装槽

除了下述情况外,可以装入底座组件上的任一槽内。

如安装于没有电源组件的增设底座组件上(A1S52B、A1S55B、A1S58B),则可能会产生电源容量不够的情况,请予注意。

当把A1S64AD安装于没有电源组件的增设底座上时,请考虑下列各项来选定电源组件、基本底座组件、增设底座组件及增设电缆。

- ① 基本底座组件上电源组件的电流容量
- ② 基本底座组件的电压降
- ③ 增设底座组件的电压降
- ④ 增设电缆的电压降

(4) 数据链路系统

在数据链路系统中,主站、本地站、远程输入输出站都能设置。有关远程输入输出站的程序例子,请参照MELSECNET、MELSECNET/B数据链路系统参考手册。

第3章 规格

本章说明A1S64AD的一般规格、性能规格、程控器CPU的输入输出一览及缓冲存储器的规格。

3.1 一般规格

A系列程控器的一般规格如表3.1所示。

表3.1 一般规格

项目	规格						
使用环境温度		0~5	55 °C				
储存环境温度		-20-	−75 °C				
使用环境湿度		10~90%相对	湿度,不结算	P T			
储存环境湿度		10~90%相对	湿度,不结算	•			
		频率	加速度	振幅	扫描次数		
耐振动性	按照JIS C 0911标准	10~55Hz		0.075 mm	10次		
ŀ		55~150Hz	lg		(1个倍频程/1分钟)		
耐冲击性	按照JIS C 0912标准(10g, 3个方向各3次)						
抗噪声干扰能力	根据噪声电压1500Vp-p,噪声宽度1 µ s,噪声频率25~60Hz的噪声模拟器						
耐 压	所有交流外部端子与接地之间,交流1500V,1分钟 所有直流外部端子与接地之间,交流500V,1分钟						
绝缘电阻	所有交流外部端子与接地之间,用直流500V绝缘电阻计测量,应在5MΩ以上						
接地	第3等级接地,不可接地时应接到盘上						
使用环境	无腐蚀性气体、无严重尘埃的环境						
冷却方式		自	冷				

备 注

有※记号处的1个倍频程是表示变成初始频率的2倍或1/2倍内的频率。 例如10Hz→20Hz、20Hz→40Hz、40Hz→20Hz、20Hz→10Hz中无论那一个变 化都指1个倍频程。

3.2 性能规格

本节说明A1S64AD的性能规格。

表3.2 性能规格

项 目	规 格						
模拟输入	电压: DC-10~0~+10V(输入阻抗1MΩ) 电流: -20~0~+20mA(输入阻抗250Ω) 使用输入端子选择						
数字输出	带16位符号的二进制数						
	数字输出值(增益5V/20mA、补偿0V/mA时) 模拟输入						
	快报机八	1/4000	1/8000	1/12000			
	+10	+4000	+8000	+120000			
输入输出特性	+5V或+20mA	+2000	+4000	+6000			
	0V或mA	0	0	0			
	-5V或-20mA	-2000	-4000	-6000			
	-10V	-4000	-8000	-12000			
*		1/4000	1/8000	1/12000			
张 最大分辨率	电压输入	2.5mV	1.25mV	0.83mV			
	电流输入	10 µ A	5 μ A	3.33 μ A			
综合精度		±1%以内(相	对于最大值的精度)				
最大变换速度		20m	s/1个信道				
最大绝对输入	,		压 ± 15V ሺ ± 30mA				
模拟输入点数		4个信					
绝缘方式		输入端子与程控器电源之间	光耦合器绝缘(信道之间为非绝	3缘)			
输入输出占有点数		************************************	持殊32 点				
连接端子	20点端子块						
外部电源	不需要						
适用电线尺寸		0.75	i∼1.5mm²				
适用压接端子	1.25-3, 1.25-YS3, V1.25-3, V1.25-YS3A						
内部消耗电流(DC5V)	0.4A						
重量	0.25kg						

※出厂时增益值设定在5V/20mA,补偿值设定在0V/4mA.

点 要

最大分辨率、综合精度能够允许的模拟输入范围如下.

电压: -10~0~+10V

电流: -20-0-+20mA

3.3 输入输出变换特性

所谓输入输出变换特性是指把来自程控器外部的模拟信号(电压或电流输入)变换成数字值时的补偿值与增益值所连接成的一根斜线。

补偿值是指数字输出值为"0"时的模拟输入值(电压或电流)。

增益值是指数字输出值当分辨率

设定在1/4000时为2000, 设定在1/8000时为4000,

设定在1/12000时为6000

时的模拟输入值(电压或电流)。

A1S64AD的输入输出变换特性的例子如图3.1所示。

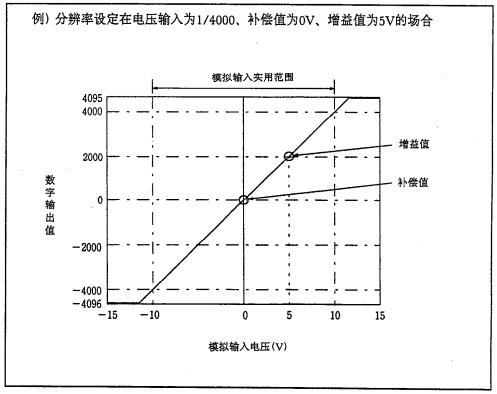


图3.1 输入输出变换特性的例子

3.3.1 电压输入特性

变更补偿·增益设定时的电压输入特性曲线的例子如图3.2所示。

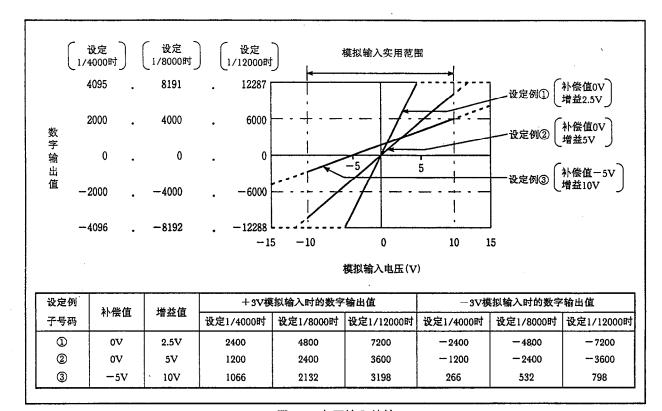


图3.2 电压输入特性

点 要

- (1) 请勿输入±15V以上的电压,否则,可能会导致元件损坏。
- (2) 输入电压在-10~0~+10V范围内时,最大分辨率、综合精度能够达到性能 规格的要求范围,如超出上述范围就往往不能达到性能规格的精度要求。(请 勿在图中的虚线部分使用。)
- (3) 当模拟输入使数字输出值超过所设定的分辨率的数字值最大(4095/8191/12287)或最小(-4096/-8192/-12288)时,数字输出值将被固定在所设定的分辨率的最大(4095/8191/12287)或最小(-4096/-8192/-12288)状态。
- (4) 补偿·增益的设定务请遵照下列条件。当偏离这些条件进行设定时则就不能确保正确的特性。

(增益值)-(补偿值)>n

分辨率	n(V)
1/4000	1.0
1/8000	1.5
1/12000	2.0

3.3.2 电流输入特性

变更补偿·增益设定时的电流输入特性曲线的例子如图3.3所示。

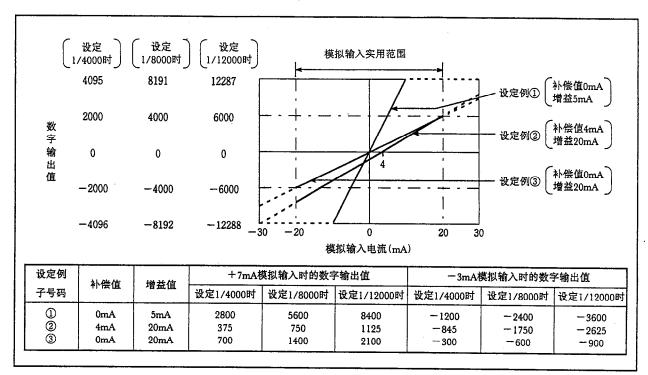


图3.3 电流输入特性

点 要

- (1) 请勿输入±30mA以上的电流,否则,温度升高可能会引起故障。
- (2) 输入电流在-20~0~+20mA范围内时,最大分辨率、综合精度能够达到性能规格的要求范围,如超出上述范围就往往不能达到性能规格的精度要求。 (请勿在图3.3中的虚线部分使用。)
- (3) 当模拟输入使数字输出值超过所设定的分辨率的数字值最大(4095/8191/12287)或最小(-4096/-8192/-12288)时,数字输出值将被固定在所设定的分辨率的最大(4095/8191/12287)或最小(-4096/-8192/-12288)状态。
- (4) 补偿·增益的设定务请遵照下列条件。当偏离这些条件进行设定时则就不能确保正确的特性。

(增益值)-(补偿值)>n

分辨率	n(mA)
1/4000	4.0
1/8000	6.0
1/12000	8.0

3.3.3 补偿·增益设定与数字输出值的关系

本节说明补偿·增益设定与数字输出值的关系。

(1) 分辨率

分辨率由下列公式求得。

• 输入电压时

• 输入电流时

(2) 最大分辨率与数字输出值的关系

A1S64AD的最大分辨率为电压2.5 mV、电流 $10 \mu A$,因此,当根据补偿·增益设定 而成为下列公式时,数字输出值不逐一增减。

(3) 综合精度

综合精度是相对于最大数字输出值的精度。

即使变更补偿·增益的设定使输入输出特性变化,但综合精度不变化,仍保持在性能一览所给出的范围内。

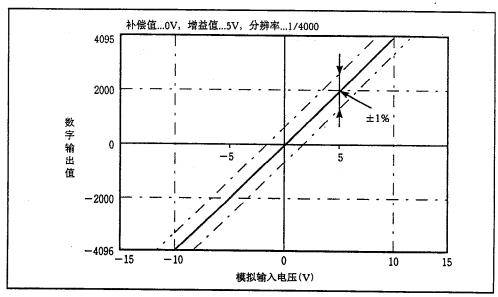


图3.4 电压输入特性的综合精度

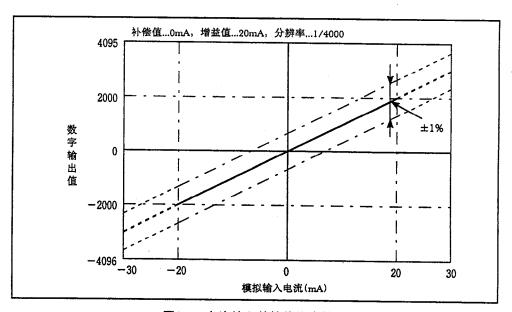


图3.5 电流输入特性的综合精度

3.4 功能一览

A1S64AD的功能一览如表3.1所示。

表3.1 A1S64AD功能一览

项 目	内 容	参照页次
A/D变换 允许/禁止设定	· 分别对各个信道指定A/D变换允许(变换)/禁止(不变换)。 (缺省值全部信道允许) · 将不使用的信道设定在变换禁止,能够缩短取样的时间。	3.7.2节
补偿 增益设定	· 没有电位器而能够分别对各信道进行补偿·增益设定,可变更输入 输出变换特性。	3.3节
平均处理的指定	· 分别对各个信道设定A/D变换的次数或时间,在所设定的次数或时间内对A/D变换数据进行平均处理,将平均值作为数字输出值存储在缓冲存储器内。	3.7.3节
取样处理的 指定	· 随时对各个信道的模拟输入值进行A/D变换,把当时的数字输出值存储在缓冲存储器内。	3.7.3节

3.5 最大变换速度

从信道转换开始至A/D变换后的数字值被写入缓冲存储器所经过的时间叫做变换速度。

下面说明最大变换速度。

3.5.1 1个信道的变换速度

A1S64AD的每1个信道的变换速度为20msec。 当使用几个信道时,(20msec×变换允许信道数)就成为取样时间。

3.5.2 执行FROM/TO指令对最大变换速度的影响

3.5.1节中所述的速度是不执行FROM/TO指令时的最大变换速度,执行FROM/TO指令时就成为下述的情况。

- (1) 如把A/D变换后的数字值写入缓冲存储器的时间与FROM/TO的处理执行相重合,则向缓冲存储器的写操作将一直等到FROM/TO处理结束.
- (2) 如信道转换时间与FROM/TO的处理执行相重合,则信道转换将一直等到FROM/TO处理结束。
- (3) 在向缓冲存储器进行A/D变换后的数字值的写处理中或在信道转换中,FROM/TO处理将一直等到写处理或信道转换处理结束。
- (4) 指定FROM/TO指令时,请一次指定读写一批数据。 FROM/TO的指令数愈少则影响程度就愈小。

3.6 程控器CPU的输入输出信号

本节说明输入输出信号的地址分配和各信号的功能。

3.6.1 输入输出信号一览

A1S64AD在与程控器CPU进行信号交换时,共使用32点输入和32点输出信号。 表3.2所示为输入输出信号的地址分配及各信号的名称。

元件X表示从A1S64AD向程控器CPU的输入信号,元件Y表示从程控器CPU向A1S64AD的输出信号。

此外,本章以后所述的输入输出号码X、Y、I/O地址是表示把A1S64AD装在基本底座组件0槽内的情况。

信号方向:	A1S64AD→程控器CPU	信号方向	可: 程控器CPU-A1S64AD
元件号码	信号名称	元件号码	信号名称
X 0	监视时钟出错标志	Y0	
		≀	不可使用
X1	A/D变换READY] Y11	
X2	出错标志	Y12	出错复位
X3		Y13	
≀	不可使用	≀.	不可使用
XIF		YIF	

表3.2 输入输出信号一览

点 要

万一,在程控程序中Y0-Y11、Y13-Y1F被ON/OFF时,则就不能保证A1S64AD的功能。

与X0-X1F同号的Y0-Y1F不能作为内部继电器使用。

3.6.2 输入输出信号的功能

表3.3所示为AIS64AD的各输入输出信号的功能。

表3.3 输入输出信号详解

元件 号码	信号名称	内容	备 注
X0	监视时钟出错标志	· 依助A1S64AD的自诊断功能,当发 生监视时钟出错时成为ON状态。	· A1S64AD的A/D变换停止。 · X0接通(ON)时,表示A1S64AD的 硬件有故障。
X1	A/D变换READY	· 当程控器CPU的电源接通时或当进行复位操作时,在正常方式(测试方式除外)下A/D变换准备就绪时这个信号成为ON状态。 · 这个信号也能用于缓冲存储器读/写时的互锁。 · 如把模块前面的测试端子短路,则这个信号就成为OFF状态。	· 所谓A/D变换准备就绪是指 4 个信道所有的A/D变换一旦完毕并把数字输出值存储到缓冲存储器的那个时间。
X2	出错标志	·除了监视时钟出错以外的错误在A1S64AD内发生时,这个信号就成为ON状态。 ·如X2接通(ON),则出错代码就被存储到出错代码存储区。 ·如把出错复位信号置于ON状态,则X2就成为OFF状态。	
Y12	出错复位	· 当把这个出错复位信号置于ON状态时,则由于A1S64AD出错而ON的出错标志就被OFF;与此同时,还清除存储在缓冲存储器出错代码存储区内的出错代码并写入"0"。 · 模块前面的"RUN"发光二极管从出错(闪亮)变为正常操作中的(点亮)。	出错标志 (X2) 由系统使其 ON/OFF 由用户程序 (Y12) 使其ON/OFF 使其ON/OFF 使其ON/OFF 使其ON/OFF 使其ON/OFF 的 由错代码 0

3.7 缓冲存储器

A1S64AD上装有与程控器CPU进行数据交换的缓冲存储器。 (没有用电池支持)

本节说明这个缓冲存储器的地址分配及其数据组成。

3.7.1 缓冲存储器的地址分配

缓冲存储器的地址分配如图3.6所示。

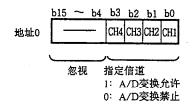
地址	(10进制数)		缺省值	读	写	参照章节
0	A/D变换允许·禁止设定		000FH(全部信道允许)	允许	允许	3.7.2节
1	平均处理的指定		0(全部信道取样处理)	允许	允许	3.7.3节
2	CH1 平均时间、次数					
3	CH2 平均时间、次数		·			
4	CH3 平均时间、次数	1				
5	CH4 平均时间、次数		0	允许	允许	
6			U	ルバ	JUIT	-
7	不可使用 	١				
8						
9						3.7.4节
10	CH1 数字输出值					3.7.4 1
11	CH2 数字输出值					
12				ļ		
13	CH4 数字输出值	1	0	允许	_	
14		ł	U	JUH		
15	— 不可使用 —	ı				
16						
17						
18	写数据出错代码		0(没有出错)	允许	_	3.7.5节
19	A/D变换结束标志		000FH(全部信道A/D变换结束)	允许	_	3.7.6节
20	分辨率设定]	1(1/4000)	允许	允许	3.7.7节

图3.6 缓冲存储器的地址分配

要 点

请勿向缓冲存储器地址10~13(读专用区域)进行写操作。如进行写操作就会出错, A1S64AD的"RUN"发光二极管闪亮, 出错代码被存储到缓冲存储器的地址18. 此 外,还因A1S64AD重复写数据而使数据被破坏。

3.7.2 A/D变换允许·禁止设定


能够把AIS64AD各信道的A/D变换允许·禁止设定,"I"(允许)或"0"(禁止)按各信道写入缓冲存储器的地址0。

把不使用的信道设定变换禁止状态,能够缩短取样周期。(缺省值表示全部信道都 执行A/D变换。)

例)

仅将信道1、3设定为A/D变换允许时的取样周期 2 × 20ms = 40ms (允许信道数) (1个信道的变换速度)

① 变换允许·禁止的设定方法 分别设定各个信道的变换允许·禁止。

- ② 变换允许·禁止设定时的A1S64AD的处理
 - (a) 平均处理的初始化为了进行平均处理,要使A1S64AD的系统存储在工作区域内的数据初始化。存储在缓冲存储器内的数字值将保持进行变换允许·禁止设定前的数据。例如,指定了进行50次平均处理的信道,如在进行了30次取样处理的时刻再设定变换允许·禁止,则这30次的取样数据将被清除,并从初始状态开始进行平均处理。
 - (b) A/D变换结束标志的复位 将信道1~4的A/D变换结束标志(缓冲存储器的地址19)复位。

3.7.3 取样处理/平均处理的设定

- (1) 取样处理和平均处理的数字值输出方法
 - (a) 取样处理

逐次地对模拟输入值进行A/D变换,并将数字输出值存储到缓冲存储器内。 取样处理的数字输出值被存储到缓冲存储器所需的时间随A/D变换允许 的信道数而变。

(处理时间) = (A/D变换允许的信道数) × 20(ms)

最大变换速度

〔例〕当把信道1、2、3三个信道设定为变换允许时 3×20=60(ms)

(b) 平均处理

A1S64AD按设定次数或设定时间对程控器CPU所指定的平均处理的信道进行 A/D变换,并将最大值和最小值所除的合计值加以平均后,存储到缓冲存储 器内。但是,当处理次数为2次以下时就变为取样处理。

如进行A/D变换允许·禁止设定,则进行平均处理的初始化。

- ① 指定按时间进行平均处理时
 - ·以10ms为单位来设定处理时间,不满10ms则舍去。
 - 〔例〕设定1234ms时,作为1230ms处理。
 - ·设定时间的处理次数随A/D变换允许的信道数而变。

- [例] A/D变换允许的信道数为4个,设定时间为8000ms时 8000÷(4×20)=100(次)
- ② 指定按次数进行平均处理时 次数平均所得的平均值被存储到缓冲存储器内所需的时间,随A/D变换 允许的信道数而变。

(处理时间) = (设定次数) × (A/D变换允许的信道数) × 20 (ms)

最大变换速度

[例] 把信道1、2、3、4四个信道设定为A/D变换允许的信道,设定次数50时 50×4×20=4000(ms)

- (2) 平均处理的指定和时间平均,次数平均的选择
 - (a) 当电源接通,A1S64AD的A/D变换READY信号ON时,全部信道成为取样处理状态。
 - (b) 当选择了取样处理或平均处理后,再进行处理方法的指定.

点 要

- (1) 在指定平均处理时,事前必须先设定好平均处理的次数或时间。
- (2) 不指定平均处理时,就变成取样处理而与时间/次数无关。

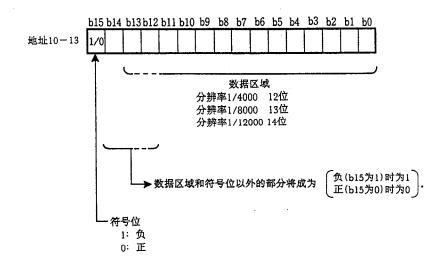
(3) 平均时间·平均次数的指定

- (a) 分别对各个已指定平均处理的信道,把平均时间或平均次数写入缓冲存储器 地址2~5中对应信道的地址中。 电源接通时的平均时间和平均次数都变为 0。
- (b) 可设定范围如下。

按次数的平均处理

1~500次

按时间的平均处理


80~10000ms

点 要

当上述范围以外的设定值被写入时,就成为设定出错状态,缓冲存储器中的内容不变,AIS64AD按设定出错前的平均时间、次数进行A/D变换处理。

3.7.4 数字输出值

A/D变换后的数字值,按各信道分别被存储到缓冲存储器的地址10-13。 数字输出值是带16位符号的二进制数,分辨率以设定1/4000时为-4096~4095, 设定1/8000时为-8192~8191,设定1/12000时为-12288~12287来表示。 (负的数字值用2的补码表示。)

3.7.5 写数据出错代码

- (1) 设定数据由程控器CPU写入时,A1S64AD仅进行一次数据的范围校验及读写区域的存取校验;当超出范围时,把出错代码以16位二进制数存储到缓冲存储器的地址18。
 - 出错代码的详细说明请参照6.1节。
- (2) 当同时产生几个错误时,A1S64AD存储最先产生的错误的出错代码,其后的出错不存储。
- (3) 出错的复位方法是用程控程序将Y12(参照3.6节)接通(ON)。
- (4) 出错一复位,数据出错代码就变成0,A1S64AD的"RUN"发光二极管从闪亮变成点亮。
- (5) 如把"0"写入缓冲存储器的地址18,则出错复位。

3.7.6 A/D变换结束标志

- (1) 在电源接通后A/D变换READY信号(X1)接通(ON)时,信道1-4已完成所有的A/D变换; 因此,000FH(15)被存储到缓冲存储器内。
- (2) 电源接通后的A/D变换结束标志的处理,仅在变更A/D变换允许·禁止设定("地址 0")时进行一次。
 - · A/D变换由禁止一允许时 已指定了平均处理的场合,在完成平均次数或平均时间的平均处理,将A/D变 换后的数字值存储到缓冲存储器之后,把标志置于1.
 - · A/D变换由允许一禁止时 把相应信道的A/D变换结束标志置于0。
- (3) A/D变换结束标志按信道区分.

A/D变换结束标志

- 1: A/D变换结束
- 0: A/D变换未结束
- (4) A/D变换结束标志可用作平均处理的信道数字值读出时的互锁信号。

3.7.7 分辨率的设定

- (1) 数字输出值的分辨率可在1/4000、1/8000、1/12000三个中任意设定。电源接通时,作为缺省值处理而被设定在1/4000。
- (2) 向缓冲存储器的地址20写入"1-3"来设定分辨率。

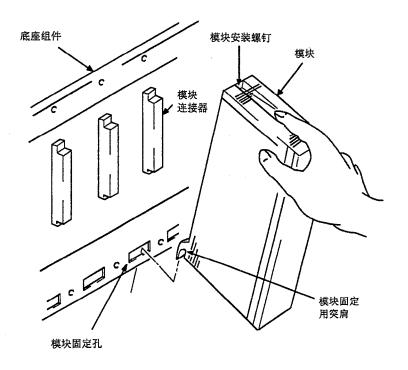
设定数据	分辨率
1	1/4000
2	1/8000
3	1/12000

点 要

请在程控器RUN时,在进行A/D变换允许·禁止设定之前来设定分辨率,而且只能进行一次。

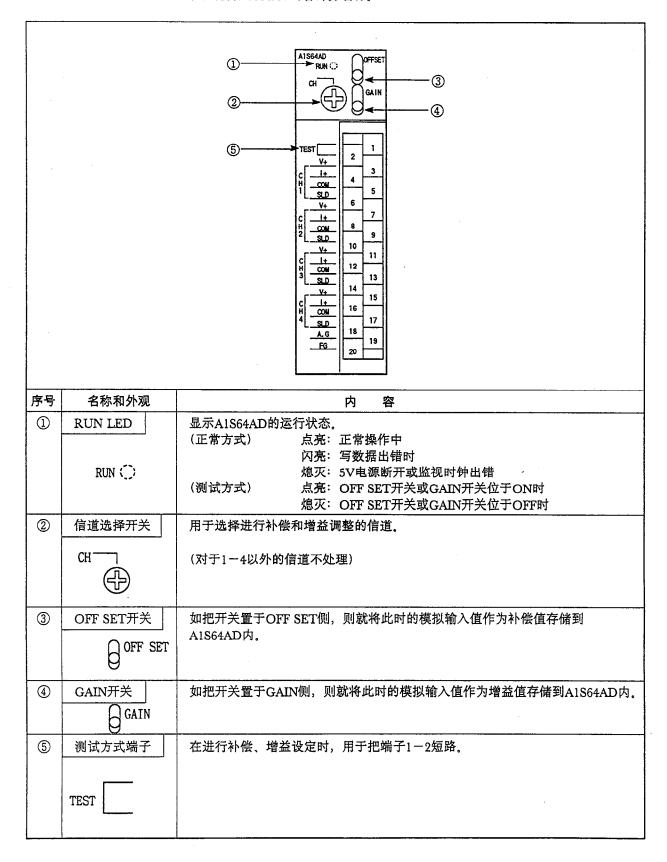
如在A/D变换允许的状态下进行设定变更,则就不能得到正确的数字输出值。

第4章 运行前的设定和操作步骤

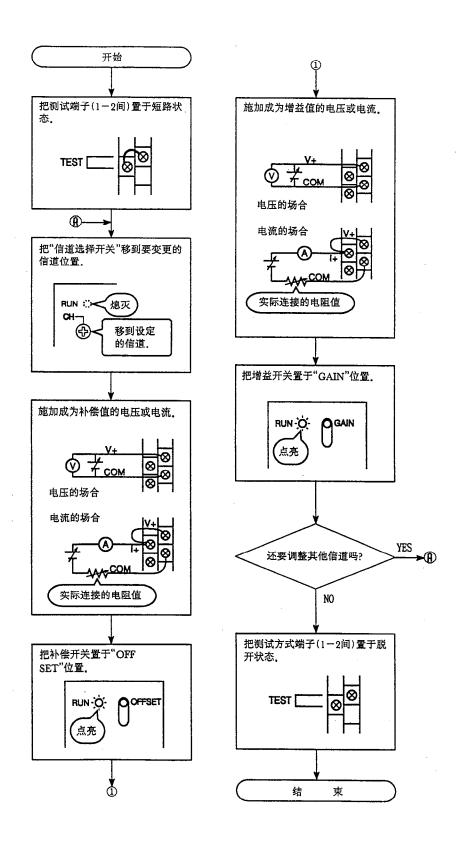

4.1 使用上的注意事项

本节说明A1S64AD使用上的注意事项。

- (1) 本体的外壳和端子块用树脂制成,因此,请勿让它掉落或受强烈的冲击。
- (2) 请勿从外壳拆下模块的印刷电路板,否则可能会引起故障。
- (3) 在布线时,请注意不要让电线屑等异物从模块的上部进入,如有异物进入,请将其清除。
- (4) 模块的安装螺钉、端子螺钉拧紧扭矩应在下表所示的范围内。


螺钉使用部位	拧紧扭矩范围
模块安装螺钉(M4螺钉)	78~118N · cm { 8~12kg · cm }
端子块的端子螺钉(M3.5螺钉)	59~88N · cm { 6~9kg · cm }
端子块安装螺钉(M4螺钉)	78~118N · cm { 8~12kg · cm }

(5) 在把模块装入底座时,务请把模块固定用突肩插入模块固定孔内,然后用模块安装螺钉将其固定。拆卸时,务请先拧下模块安装螺钉,然后再从模块固定孔拔出模块固定用突肩。


4.2 各部分的名称

本节说明AIS64AD的各部分名称。

4.3 补偿·增益设定

要变更输入输出变换特性时,请按下述步骤进行。

点 要

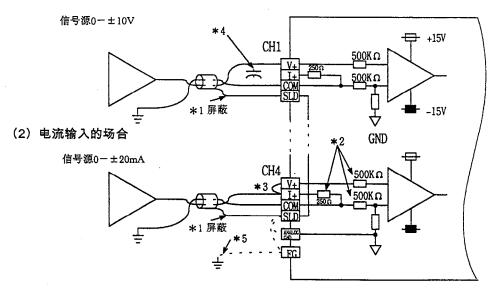
- (1) 补偿值和增益值,请以实际使用状态设定。
- (2) 补偿值和增益值被存储在A1S64AD内,即使电源断开也不会消失。
- (3) 补偿·增益设定,请在程控器CPU STOP的状态下进行。如置于测试方式则 全部信道的A/D变换将会中断,请把A/D变换READY信号用作互锁信号。
- (4) 补偿·增益设定,请在DC-10~0~+10V或-20~0~+20mA的范围内进行,如超出这个范围进行设定,最大分辨率·综合精度就达不到性能规格的要求范围.
- (5) 要变更4.4.2节中*5标记所示部位的接地状况(未接地→接地或已接地→拆除)时,务请在开始补偿·增益设定之后再进行变更。

4.4 布线

本节说明布线上的注意事项及模块的连接例子。

4.4.1 布线上的注意事项

为了充分发挥A1S64AD的功能,使系统保持高的可靠性,其必要条件之一就是防止外部电线受噪声的影响。


下面叙述外部布线时的注意事项。

- (1) 交流和A1S64AD的外部输入信号请分别使用单独的电缆,以免受交流侧浪涌噪声及感应的影响。
- (2) 请勿把主电路及高压电线靠近控制线和信号线或包扎在一起。否则会容易受到噪声干扰、浪涌噪声及感应的影响。
- (3) 请把屏蔽线或屏蔽电缆的屏蔽在程控器侧接地于一点。但是,根据外部噪声状况的不同,在有些情况下最好在外部侧接地。

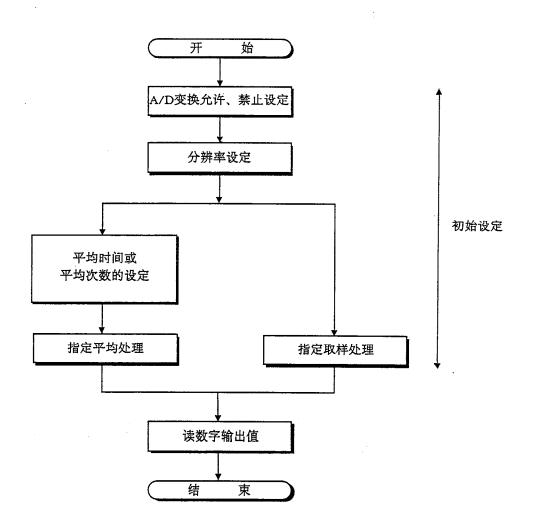
4.4.2 模块的连接例子

下图所示为电压输入和电流输入的连接例子。

(1) 电压输入的场合

- *1 请使用2芯双绞屏蔽线。
- *2 表示A1S64AD的输入阻抗。
- *3 电流输入的场合,务请连接(V+)和(I+)的端子。
- *4 当外部电线产生噪声干扰或微波的影响时,请在端子V和COM之间连接 $0.1\sim0.47~\mu$ F25WV的电容器。
- *5 噪声特别严重时,请予接地。此时,在有些情况下如把电源组件的FG或本模块的FG也接地,则效果会更好。 在设定好补偿值和增益值后,再变更接地的布线(不接地)时,请重新设定补偿值和增益值。

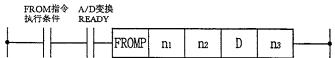
4.5 保养、检查


作为A1S64AD模块而言虽不存在需要特别检查的项目,但为了能使系统始终保持最佳的状态,请按照程控器CPU用户手册中规定的检查项目进行检查。

第5章 编程

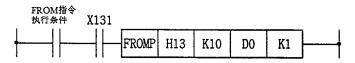
本章说明A1S64AD的编程步骤、基本的读写程序及程序的例子。 有关缓冲存储器请参照3.7节;有关指令的详解请参照ACPU编程手册。

5.1 编程步骤


请按下述步骤来编制使AIS64AD执行模拟/数字变换的程序。

5.2 读写的基本程序

(1) 自A1S64AD读出......FROM、FROMP、DFRO、DFROP指令

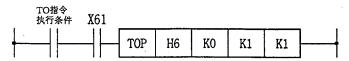


符号	内 容	能够使用的元件
nl	用16进制3位数来表现被分配于A1S64AD首输入输	К, Н
	出号码的高2位	
n2	存储数据的缓冲存储器的首地址	К, Н
D	存储读出数据的元件之首号码	T, C, D, W, R
n3	读出数据的字数	K, H

例

当A1S64AD被分配于输入输出X130~14F、Y130~14F时,从缓冲存储器的地址10把数据读出至1字D0的场合

(2) 向A1S64AD写入.....TO、TOP、DTO、DTOP指令


格式

```
TO指令 A/D变换
执行条件 READY TOP n1 n2 S n3
```

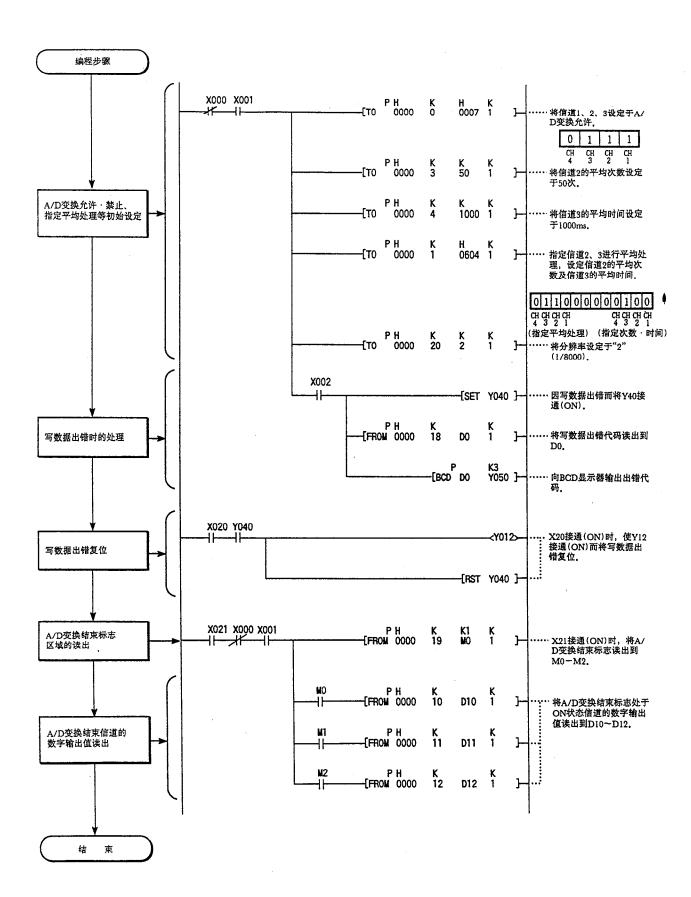
符号	内 容	能够使用的元件
nl	用16进制3位数来表现被分配于A1S64AD首输入输	K, H
	出号码的高2位	
n2	存储数据的缓冲存储器的首地址	K, H
S	存储写入数据的首元件之号码或常数	T, C, D, W, R, K, H
n3	写入数据的字数	K, H

例

当A1S64AD被分配于输入输出X60~7F、Y60~7F时,把1写入缓冲存储器的地址0的场合

5.3 初始设定程序和读数字输出值程序举例

这是一个以1/8000的分辨率,读信道1~3进行A/D变换后的数字输出值的程序例子。 信道1进行取样处理,信道2进行50次的平均处理,信道3进行1000ms的平均处理; 当发生写出错时,以BCD显示出错代码。


举例程序的条件

① 系统构成

电源组件	A 1 S C P U	A 1 S 64 A D	A 1 S X 41 32点	A 1 S Y 41 32点		
------	----------------------------	-----------------------------	-------------------------------	-------------------------------	--	--

② 初始设定内容

(2)	19J X	可以定内谷	
	$_{\mathbf{a}})$	A/D变换允许信道	1、2、3信道
	ь)	按照次数进行平均处理的信道	2信道,次数设定为50次
	c)	按照时间进行平均处理的信道	3信道,时间设定为1000ms
	d)	分辨率	"2"1/8000
3	用户	中使用的元件	
	a)	写数据出错复位信号	X20
	ь)	数字输出值读指令输入信号	X2 1
	c)	写数据出错外部显示	Y40
	d)	写数据出错代码BCD输出	Y50-5B
	e)	写数据出错代码存储用数据寄存器	D0
	f)	A/D变换结束标志存储元件	M0-M2
	g)	数字输出值读出首数据寄存器	D10-D12

第6章 故障排除

本章说明使用A1S64AD时常见的故障内容及其排除方法。

6.1 出错代码一览

如在从程控器CPU向A1S64AD写数据或读数据时出错(A1S64AD的RUN发光二极管闪亮),则下列出错代码会存储到A1S64AD的缓冲存储器的地址18内。

表6.1 出错代码一览(A1S64AD检测的出错内容)

出错代码	原 因	处置方法
100	·分辨率被设定在1~3之外。	·请把分辨率设定 在1~3中的任一 个。
102	・向读专用区域(地址10~13)进行了写操作。	·修正指定为读专 用区域的地址。
□0	·平均时间设定值被设定在80~10000ms的范围外。 ·□表示出错的信道号码。	· 把平均时间设定 值设定在80~ 10000ms的范围 内。
□5	平均次数设定值被设定在1~500次的范围外。 小。 □表示出错的信道号码。	· 把平均次数设定 值设定在1~500 次的范围内。

- (1) 当同时产生几个错误时,存储最先产生的错误的出错代码,其后的出错代码不存储。
- (2) 出错代码的复位方法是将出错复位信号"Y12"(参照3.6节)接通(ON)。

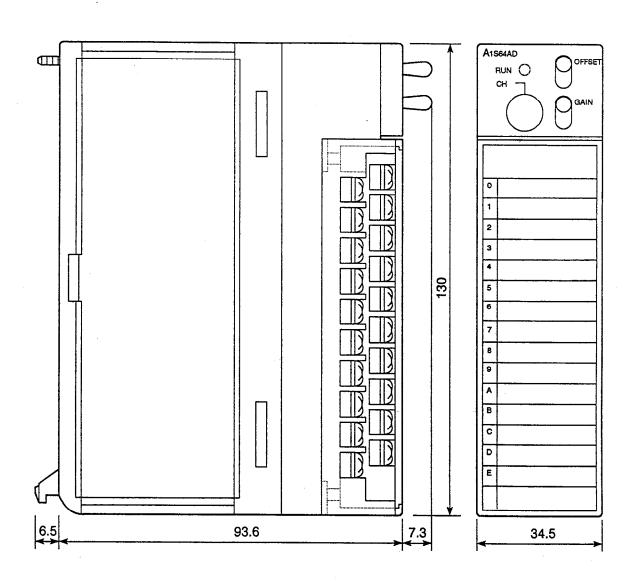
6.2 故障排除

下面说明使用A1S64AD时的故障排除的简单方法。 有关程控器CPU的故障,请参照程控器CPU用户手册。

6.2.1 A1S64AD的RUN发光二极管闪亮的场合

检查项目	处置方法
不能执行读、写的数据被写入了 A1S64AD内。	从6.1节中的出错代码一览表中确认出错原因,修正程控程序。

6.2.2 A1S64AD的RUN发光二极管熄灭的场合


检查项目	处置方法
TEST端子间是否已脱开。	进行补偿·增益调整后,将TEST端子间 脱开。
X0(监视时钟出错)是否处于ON状态。	将程控器CPU复位。 当将程控器CPU复位后仍不点亮时,可 认为硬件有异常。 请与就近的经销代理店或分公司联系。

6.2.3 数字输出值读不出的场合

检查项目	处置方法
A1S64AD的RUN LED是否处于闪亮或熄	闪亮或熄灭的场合, 请按照6.2.1和6.2.2
灭状态。	节处理。
CPU本体的ERROR LED是否点亮着。	按照程控器CPU用户手册检查出错内
	容。
CPU本体的RUN LED是否闪亮或熄灭。	按照程控器CPU用户手册检查出错内
	容。
执行FROM指令的条件是否处于ON状	使用GPP等外围设备进行监视,检查
态.	ON/OFF状态。
用FROM指令指定的缓冲存储器的地址	检查程控程序。
是否为读出信道的数字输出值的地址。	
用FROM指令指定的信道是否成为A/D	读缓冲存储器的地址0,确认变换允许
变换允许的状态。	禁止状态。
用FROM指令指定的信道其变换是否已	读缓冲存储器的地址19, 确认变换结束
结束。	标志。
是否存在模拟输入信号线脱开、断线等	通过目视检查信号线,检查导通状况等
异常情况。	来确认异常部位。
脱开A1S64AD的模拟输入信号线,在本	如A1S64AD本身的数字输出值正常,则
模块的端子上施加测试电压(稳压电源或	是因外部电线受到噪声干扰等影响而引
干电池),测量数字输出值。	起的,因此请检查布线状况及接地方
	法。

附 录

附1 外形尺寸图

单位:毫米

附 2 符号纸

正 面

背 面

1	
2	
3	
4	
5	
6	
7	·
1 2 3 4 5 6 7 8 9	• • • • • • • • • • • • • • • • • • • •
19	
10 11	
12	
12	
14	
13 14 15 16	
16	
17	
18 19	
19	
20	
	84545670-001

重要

- (1) 在设计系统时,请把用于程控器出故障时的安全保护电路设置在外部。
- (2) 在印刷电路板上安装有会受静电影响的电子元件,因此,在直接操作印刷电路板时,请注意下列事项。
 - ① 请将人体和工作台接地。
 - ② 请勿直接触碰产品的导电部分及电气元件。

模拟数字变换模块A1S64AD

用户参考手册

型号	A1S64AD-U-CH
	SH(NA)-080207C-A

HEAD OFFICE : 1-8-12, OFFICE TOWER Z 14F HARUMI CHUO-KU 104-6212, TELEX : J24532 CABLE MELCO TOKYO NAGOYA WORKS : 1-14 , YADA-MINAMI 5 , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.