

特长

通过在部件单位上的自动位置修正,缩短了示教时间及实现了高直行率

在高密度实装电路板上,由于电路板的弯度及收缩 以及电路板的固定等情况,会在窗口位置上发生 细 微的偏移。为此,以前都必须在示教时对每个部件 的位置进行确认与修正的工作。VT-WIN在部件单 位上配备了自动位置修正功能「这边的窗口功能」。 在大幅度减轻这种确认修正工作的同时,实现了稳 定且直行率高的检查。

以晶片部件 为例:即使在如左边的拍摄画面那样 的窗口位置与部件有 偏移时,也可以像右边的拍 摄画面那样自动探索部件位置,修正窗口。

运用表示检查的计测数据及分散的直方图,给予 示教的收集以强大的支持。

VT-WIN是以人类工程学为基准 通过对各流程的分析表示,对示 教提供支持。

以左面回面为例 **① 判定结果**(左上图) 进行部件测试可知板面2上的焊缝 出现异常。 这里用"咔嗒"声→表示检查标准 设定画面。

❷ 设定检查标准(右图) 表示检查标准的设定值与计测值及 CK /NG,可获知此部件在何种设定 上NG. 在这里点击鼠标→直方图画面表示。

❸ 直方图(左下图) 进一步分散表示同一部件计测值(直 方图),可获知怎样设定能进行稳定的良品判别。

结合了经验与技术完成度相当 高的部件文库

部件库是将如何检查部件作为相关情报(窗口情报+检查标准)登 记下来的检查的「种」。

各部件种都拥有在信息组上推敲成熟的检查计算方法,因为内容 非常丰富,所以即使对于多样化的实装产品也可进行稳定的检查。 此外,通过表示部件图像的「样本陈列功能」等可进行简单快捷

的图库管理。 检查程序,可从部件文库 读取部件,并登记在电路 板上。对于多品种生产有 理想的效果。

(下一页有详细 说明)

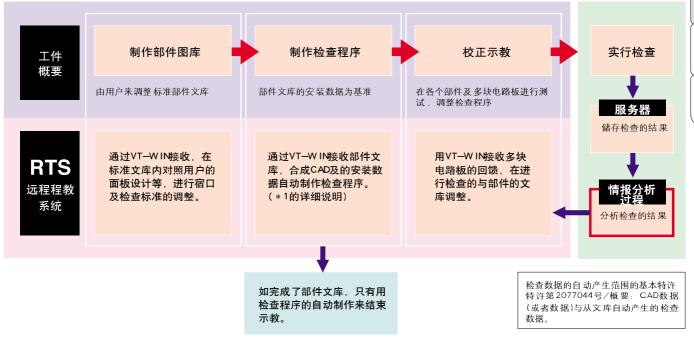
有关商品的询问请到 ●视觉检查事业部。 上海 021-5037-2222・北京 010-8391-3005・深圳 0755-359-9028

Sh-

-OST

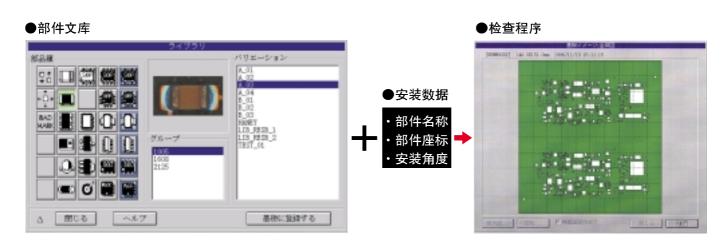
特长

强大的示教支持装置RTS


RTS(运程・示教・系统)是以VT-WIN为主体实行代替VT-WIN示教的装置。

藉此可护大VT-WIN主体的检查工作时间。

增加的RTS国家传送已可通过网络及MO进行,在距离遥远的地方也可构成示教支持。


此外,情报分析过程是以线路反馈为主要目的,对检查结果进行分析的装置,也拥有将分析结果反馈回示教的功能。 与RTS合并使用,最合适适用于制作检查程序。

●示教流程

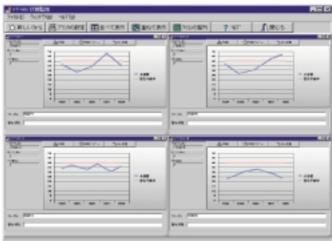
程序自动制作功能 (*1)(特许第2077044号)

检查程序是基于部件文库(部件的检查设定)的安装数据(CAD、数据),通过排布在电路板四的制作的。虽然分割此时拍摄的图画也可再次合成,但这项工作是由外部数据制作装置TI(电脑软件)自动进行的。在RTS上也包含此软件。

VT-400N

VT-WN

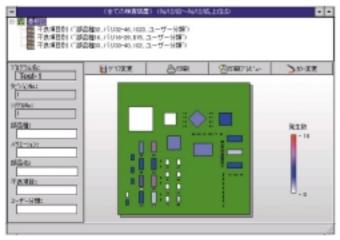
VT-RBT


SP-OST

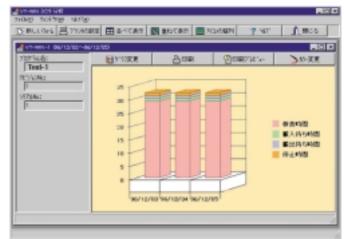
将检查的各种计测数在生产上进 行反馈的情报分析过程

情报分析终端即用实时型来监视不合格产生量、产生量、检查 装置状况等的同时,在分析表上显示累积的检查结果,通过撑 握不合格的发生倾向,支持生产的反馈的装置。

特长


●监控

●生产状况


●不合格情报(图)


可进行分析

- 一种分析手法,注视特定数据,观察的功能。
- 以情报分析终端为例: ●在不合格情报(图)画面上,如将不合格发生量较多的部件,在不合
- ●在小台宿前放(图)回面工,如将小台宿交工重较多的邮 格位置上以特定图表来表示。
- ●不合格情报(图表)画面,从部件类别变化,可对部件进行表示分析 欠缺的产生。

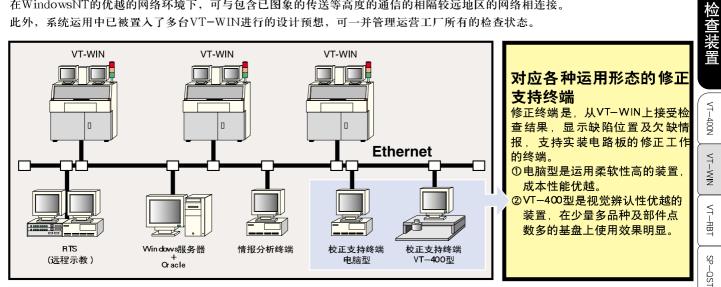
●状况

●不合格情报(图表)

综合管理多台的VT-WIN

情报分析过程即可结合管理,分析多台的VT—WIN。如打开多个窗口, 可显示多台VT—WIN的状态。

检查结果的显示界限的基本特许 用何种图象图表来表现在电路板上的不合格部件及已被判断的部件。

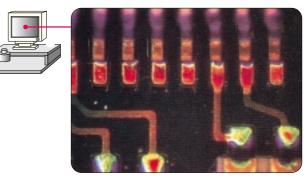

由于在配备有关系数据基板上对WindowsNT Server进行情报积累,因此使用Delphi式的非定型分析公具进行独立分析。

电路板焊接检查装置 VT-WIN

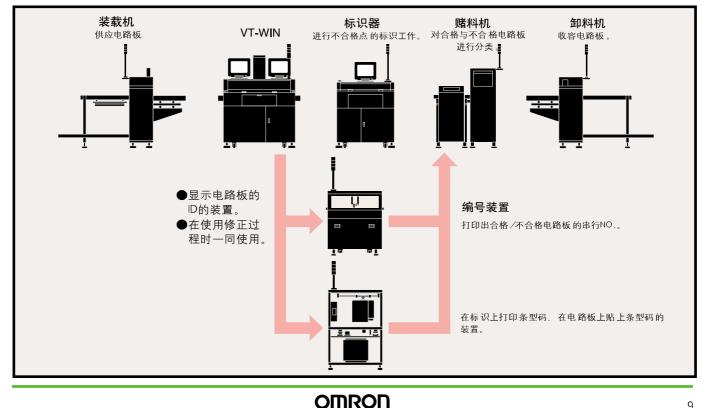
■VT--WIN的网络系统

在WindowsNT的优越的网络环境下,可与包含已图象的传送等高度的通信的相隔较远地区的网络相连接。 此外,系统运用中已被置入了多台VT-WIN进行的设计预想,可一并管理运营工厂所有的检查状态。

●电脑型


- 通过电脑上的修正功能显示在所有电路板图象上的欠缺位置。
- ●与服务器的数据基板相链接,可在数据基板上反映出修正的结果。

可进行统计数据的输出。


●VT-400型

- 显示顺次拍摄的自动欠缺的扩大实写的和这高亮度图象。 ●倍率可根据情况来变化,视觉辨认性能优秀。
- ●顺次表示全 所缺陷部分, 可防止漏查

■VT-WIN的相关器材

VT-WIN备有联机/单机下使用的各种相关器材。通过此类组合,可构成最适当的检查联线。

VT-WIN 电路板焊接检查装置

■VT-WIN的相关器材

对应VT-WIN的高速处理型的标识。

①部件类别的标识

通过来自VT-WIN的电路板图像数据对标识点进行示教时,根据预先有的部件种类,通过 登记标识类别(部件中心、位置补正、插针编号区别)来大幅度削减示教作业。

②多种多样的输入方法

标识位 置输入方法 可通过键 盘输入数值,可由笔头的移动来 输入。此外通过安装可选择 光指示示教功能,可由LED 光在电路板上指示出量头的标识位置。根据针的UP-DOWN, 只通过移动位置在电路板上指示出已确认的标识位置。

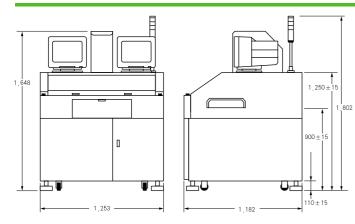
③多种拷贝功能

为对应相同部件标识位置的补正量一定的情况,而强化了拷贝功能。不仅可在自己的部 件上登记标识位置,不可拷贝「同一部件名称区别」「同一部件种类区分」「同一部件种 类+变化区别」等的标识位置。

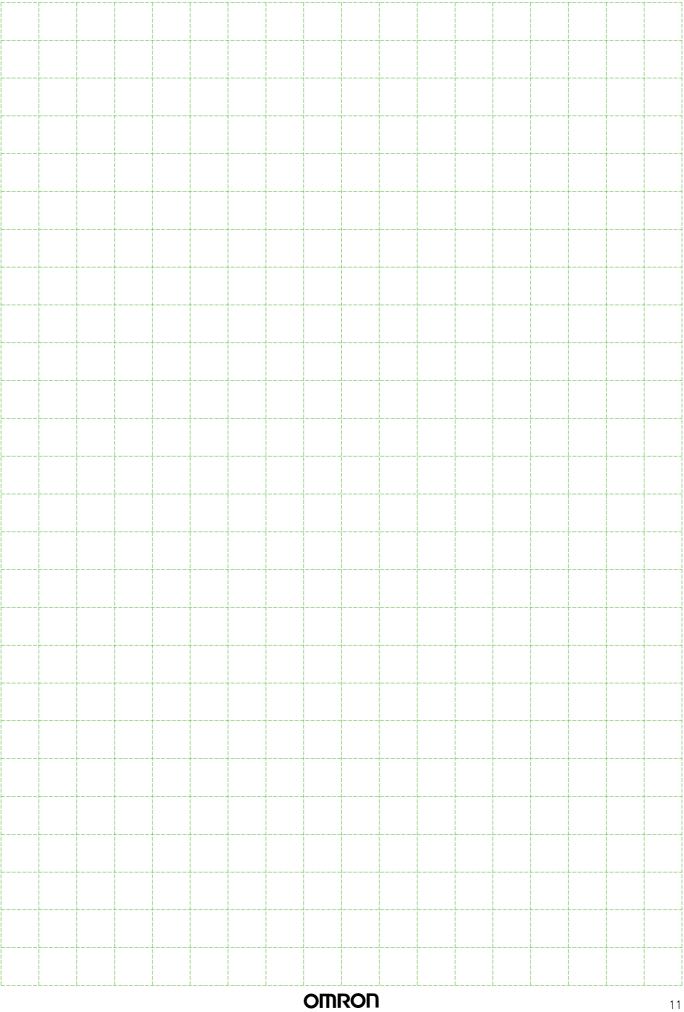
标识使用批量环形呈(1.0mm)

■额定值/性能

●坚固规格				
图像 信号 输入	TV镜头	3板式CCD镜头		
	照明	环状萤光灯3支(付带自动亮度控制器)		
	图像分解能	3、20、30、50µm(可选择变焦距透镜)		
机构部	传送	传送带方式		
	流水线般入高度	$90 \pm 15 \text{mm}$		
	调整传送带宽幅	自动调整		
	调整插针宽幅	自动调整(选择)		
电路板固定方式		外形固定、插针固定(选择)、 出厂时选择		
电源部		AC200V(三相) ±10% 4kVA以上 无停电电源1分反馈		
气压		0.4~0.6MPa		
使用周围温度		10~35°C		
使用周围湿度		30~80%RH(不结露)		
质量		1000kg以下(L.1200kg以下)		
外形尺寸		1453(W)×1182(D)×1802(H)mm		
●选择				


●竝幷

缩放	任意选择分解能13、15、20、25、30、35、50µm
J—3线检测	可进行PLCC、SOJ等的丁弯度。
检查旋转部件	可进行旋转部件的检查。(旋转数45°)


●功能规格				
检查		正流/逆流通用		
对象 电路 板		M50 × 80 ~ 255 × 333mm L50 × 80 ~ 381 × 508mm		
厚度		0.5~2.0mm		
间隙		电路板上20mm、电路板下50mm		
检查对象部品种		角片(0603~)、LSI(0.3间隙)、不 同形状部件、插入部件		
检查 项目	焊接性检查	有否焊接(焊接适量、过多不足)		
	焊接检查	有无焊接、焊锡过多、焊锡不足、完整、竖 直、浮起、桥(电桥)、焊锡球		
	检查配备部件	缺失、未插入、表里反转、极性、位置偏移、部件错误		
检查点数		最多10000种部件/电板		
示教数据		最大100机种		
数据保存		HD(硬盘)IGB, MO(光磁盘)640MB		
各部件检查数据库		以部件种类、组、变化有3000各变化		
检查结果输出		不合格部件名称、不合格插针NO.、不合格内 容、电板部件(电路板圆形、打印机监控器)		
标准检查速度		20ms/部件(250ms/画面的任何迟缓方向)		
通信		以太网、RS-232C		
换段功能		自动		
传送流程		直通、		
标准位置		左或者右(用户选择),正面或者内部(出厂时选择)		

■**外形尺寸** (单位: mm)

MEMO

